

Journal of Organometallic Chemistry 511 (1996) 239-253

Auf dem Wege zu einem stabilen Germaethen $> Ge=C < {}^{1}$: Sterisch überladene Digermylsilylmethane ${}^{t}Bu_{2}SiX-CY(GeMe_{3})_{2}$ und Struktur der Germaethenquelle ${}^{t}Bu_{2}SiF-CLi(GeMe_{3})_{2} \cdot 2THF$

Nils Wiberg^{a,*}, Hae-Sook Hwang-Park^a, Patrizia Mikulcik^b, Gerhard Müller^c

^a Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-80333 München, Germany ^b Anorganischen-Chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany

^c Fakultät für Chemie der Universität Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany

Eingegangen den 9. August 1995; in revidierter Form den 15. September 1995

Abstract

Sterically overloaded digermylsilylmethanes ${}^{t}Bu_{2}SiX-CY(GeMe_{3})_{2}$ (X = H, Me, F, Br, Y = H, Br, Li) 7-16 are accessible via ${}^{t}Bu_{2}SiH-CH(GeMe_{3})_{2}$ 7 (from ${}^{t}Bu_{2}SiHF$ and LiCH(GeMe_{3})_{2}). The compounds are distinguished by hindered rotation about the SiC single bond shown. 7-16 enter into many reactions: (i) electrophilic substitution of Y = H by Li started with MeLi/THF, or of Y = Li by Br, EMe_{3}, R started with Br_{2}, Me_{3}SnCl, Me_{3}GeCl, Me_{3}SiO(CH_{2})_{4}Cl, or of X = H by Br started with Br_{2}; (ii) homophilic substitution of Y = Br by H started with ${}^{t}Bu_{3}SiNa$; (iii) nucleophilic substitution of X = F, Br by R started with MeLi, ${}^{n}BuLi$. The latter reactions are possible only when Y = Li, and probably proceed over the silaethen ${}^{t}Bu_{2}Si=C(GeMe_{3})_{2}$ as reaction intermediate. ${}^{t}Bu_{2}SiF$ -CLi(GeMe_{3})_{2}, a potential precursor of the hitherto unknown germaethene Me₂Ge=C(GeMe_{3})(SiMe^{t}Bu_{2}), forms an adduct Li(THF)_{4}^{+} [${}^{t}Bu_{2}SiF$ -CLi(GeMe_{3})_{2} · 2THF after evaporation of THF. The structure of the latter compound shows a distorted tetrahedral geometry of the central Si and C atom with the Li atom being bonded to the latter. In addition, Li is coordinated by two molecules of THF in a slightly distorted trigonal-planar geometry. A short F · · · Li contact is not observed. (Crystals of ${}^{t}Bu_{2}SiF$ -CLi(GeMe_{3})_{2} · 2THF are orthorhombic, space group $Pca2_{1}$, with a = 20.739(3), b = 16.185(5), c = 17.642(4) Å, V = 5921.4 Å³, Z = 8, $D_{calc} = 1.256$ g cm⁻³. R = 0.057 for 527 refined parameters and 4144 observed data.) ${}^{t}Bu_{2}SiF$ -CLi(GeMe_{3})_{2} · TMEDA is supposed to have a similar structure. ${}^{t}Bu_{2}SiH$ -CLi(GeMe_{3})_{2} · OP(NMe_{2})_{3} and ${}^{t}Bu_{2}SiMe$ -CLi(GeMe_{3})_{2} · OEt_{2} have different structures.

Keywords: Synthesis; Silicon; Germanium; Digermylsilylmethanes; Digermylsilylmethanides; Bulky ligands; Crystal structure

1. Einleitung

Vor einigen Jahren konnten wir mit dem aus 1 durch Methylgruppenwanderung (Gl. 1) hervorgehenden Silaethen 1a erstmals eine bei Raumtemperatur isolierbare Siliciumverbindung mit einer normal polarisierten Si=C-Doppelbindung erzeugen [2]. Dem ungesättigten Molekül kommt nach der Röntgenstrukturanalyse ein planares $C_2Si=CSi_2$ -Zentralgerüst mit einer kurzen, für das Vorliegen einer Doppelbindung sprechenden SiC-Bindung zu [3]. Die Synthese von 1a regte dazu an, ein entsprechendes Germaethen 2a mit einer Ge=C-Doppelbindung [4] auf dem Wege über 2 zu gewinnen (Gl. 2):

Die Darstellung von 1a erfolgte gemäß Gl. (3) aus der Vorstufe 6 (als THF-Addukt), die sich in Diethylether bereits bei Raumtemperatur langsam (in Wochen) unter Methylgruppenwanderung in die als Quelle für 1awirkende Lithiumverbindung 6a (als THF-Addukt) umlagert (in Tetrahydrofuran ist 6 bei Raumtemperatur und

^{*} Corresponding author. Structure: P. Mikulcik, G. Müller. ¹ See Ref. [1].

darüber metastabil). Die Verbindung 6 läßt sich durch "Lithiierung" von 5 mit MeLi in Tetrahydrofuran (THF) darstellen, wobei 5 aus einem nach ${}^{t}Bu_{2}SiHF + LiCH(SiMe_{3})_{2} \rightarrow LiF + {}^{t}Bu_{2}SiH-CH(SiMe_{3})_{2}$ zugänglichen Trisilylmethan 3 in zwei Teilschritten auf dem Wege über 4 entsteht [2]:

Zur Erzeugung von 2a mußte somit zunächst die Synthese des Digermylsilylmethans 7 und seine Umwandlung in 10 auf dem Wege über 8 und 9 bewerkstelligt werden (G. 4). Die Verbindung 10 (als THF-Addukt) lagert sich nach unseren Ergebnissen in Diethylether allerdings auch bei höheren Temperaturen so langsam gemäß Gl. (4) in 10a (als THF-Addukt) um, daß beim Erwärmen nur Zersetzungsprodukte des aus letzterer Verbindung hervorgehenden Germaethens 2a entstehen [5]. Die intermediäre Existenz von 2a ließ sich aber durch Abfangreaktionen eindeutig nachweisen [5].

Nachfolgend soll nunmehr zur Darstellung und Eigenschaftscharakterisierung einiger sterisch überladener Digermylsilylmethane ${}^{1}Bu_{2}SiX-C(GeMe_{3})_{2}$ sowie einiger Donoraddukte von Lithiumverbindungen des Typus ${}^{1}Bu_{2}SiX-CLi(GeMe_{3})_{2} \cdot nDo$ Stellung genommen werden. Auch wird die Struktur von 10 · 2THF vorgestellt und mit der schon länger bekannten Struktur der aus **6a** · *n*THF in Anwesenheit von 12-Krone-4=K hervorgehenden Verbindung **6a** · 2K verglichen. Eine weitere Veröffentlichung [5] hat dann Erzengung und Nachweis von **2a** durch Thermolyse von **10** · 2THF in An- und Abwesenheit von Germaethenfängern zum Gegenstand.

2. Darstellung einiger Digermylsilylmethane ^tBu₂SiX-CY(GeMe₃)₂ und -methanide ^tBu₂SiX-CLi(GeMe₃)₂ \cdot *n*Do

Das als Vorstufe von 8-10 benötigte Digermylsilylmethan 7 läßt sich analog dem erwähnten Trisilylmethan 3 durch Umsetzung von 'Bu₂SiHF mit LiCH(GeMe₃), ohne Lösungsmittel bei 130°C gewinnen: ${}^{t}Bu_{2}SiHF + LiCH(GeMe_{3})_{2} \rightarrow LiF + 7$. Seine Halogenierung mit Brom führt bei 0°C in CCl₄ glatt zur Verbindung 8, die sich mit KHF₂ in siedendem Methanol quantitativ in die Verbindung 9 umwandeln läßt. Die Überführung von 9 in 10 kann wie die von 5 in 6 durch etherfreies MeLi in THF bei 45°C erfolgen, wobei aber MeLi in beiden Fällen zugleich THF nach $C_4H_8O +$ $MeLi \rightarrow MeH + CH_2 = CH_2 + CH_2 = CHOLi \quad zersetzt$ [2]. Vollständige Reaktion von 9 zu 10 (als THF-Addukt) ist mit der fünffachen stöchiometrischen Menge an MeLi in 3 Tagen erreichbar. Viel rascher (1 Tag bei 45°C) verwandelt sich 5 mit MeLi/THF in 6 (als THF-Addukt [2]). Offensichtlich ist also der Si₃CH-Wasserstoff in 5 saurer als der Ge2 SiCH-Wasserstoff in 9 (s.u.).

Analog 9—aber deutlich langsamer—läßt sich 7 mit MeLi/THF lithiieren. Die Bildung der Lithiumverbindung 11 (als THF-Addukt) ist demgemäß von einer sehr starken THF-Zersetzung begleitet; auch vermag MeLi zudem eine GeMe₃-Gruppe unter Bildung einer weiteren Lithiumverbindung (12) abzuspalten; letztere läßt sich zu 13 protonieren (die Ausbeuten an 11 und 12 sind etwa gleich groß). Wiederum reagiert die der Verbindung 7 entsprechende Verbindung 3 viel rascher mit MeLi/THF [2], was die angedeute Vorstellung einer -CH(EMe₃)₂-Aciditätsminderung nach Ersatz von E = Si durch E = Ge stützt.

^tBu₂Si-C(GeMe₃)₂

$$|$$
 $|$ $|$ $|$ $|$ $|$
H Li(Do)_n
H Li(Do) - H

^tBu₂Si—CH(GeMe₃)
$$|$$
 |
H H
13

Etwa vergleichbar rasch wie mit 9 setzt sich MeLi/THF mit 8 unter Lithiierung um (vollständiger Umsatz nach 10 Tagen bei Raumtemperatur, ca. 2/3 Umsatz nach 1 Tag). Allerdings ist hier der H/Li-Austausch mit einem Br/Me-Austausch verbunden, so daß letztendlich die Lithiumverbindung 'Bu₂SiMe-CLi(GeMe₃), (14) und nicht 'Bu₂SiBr-CLi(GeMe₃), in der Reaktionslösung nachgewiesen wird (bezüglich des Bildungsmechanismus von 14 vgl. Unterabschnitt Reaktivität). 14 entsteht mit Sicherheit nicht durch nucleophilen Br/Me-Austausch am sterisch überladenen Si-Atom von 8 mit sich anschließender Lithierung der hierbei gebildeten Verbindung 15; ansonsten sollte, da 15 von MeLi/THF sehr langsam lithiiert wird (vgl. Umsetzung von 7 mit MeLi/THF), zunächst nur das Digermylsilylmethan 15 entstehen. Da man bereits zu Beginn der Umsetzung die Bildung von 14 (Hauptprodukt) neben 15 beobachtet, muß die Verbindung 15 auf einem anderen Wege entstanden sein. Möglich erscheint eine durch Li⁺ (aus MeLi) katalysierte Umlagerung von 8 in die Substanz ^tBu₂MeSi-CH(GeMe₂)(GeMe₂Br), welche von MeLi am sterisch wenig behinderten Ge-Atom rasch unter nucleophilem Br/Me-Austausch und Bildung von 15 angegriffen werden kann [6,7] (im Prinzip könnte sich zudem ^tBu₂SiBr-CLi(GeMe₃)₂ vor einem Br/Me-Austausch in die Substanz 'Bu, MeSi-CLi(GeMe₃)(GeMe₂Br) umlagern, deren Br/Me-Austausch dann zu 14 führt [7]).

Die gebildeten Lithiumverbindungen 10, 11 und 14 lassen sich ihrerseits in weitere Digermylsilylmethane umwandeln. Erwähnt sei etwa die Umsetzung von 10 (als THF-Addukt) mit Br_2 in Et_2O , die quantitativ zur Verbindung 16 führt (vgl. hierzu Unterkapitel Reaktivität).

¹Bu₂Si—C(GeMe₃)₂
¹Bu₂Si—C(GeMe₃)₂
¹Me
$$Li(Do)_n$$

¹A · nDo
¹Bu₂Si—C(GeMe₃)₂
¹H
F Br
16

3. Charakterisierung der Digermylsilylmethane und -methanide 7-16

Die Digermylsilylmethane und -methanide 7-16 stellen farblose, kristalline, in organischen Medien gut

Abb. 1. Konformationer von ${}^{t}Bu_{2}SiX-CY(EMe_{3})_{2}$ (E = Si, Ge; Newman-Projektion entlang der zentralen SiC-Bindung.

bis mäßig lösliche Substanzen dar $(10 \cdot 2THF)$ ist in Pentan schwerlöslich), die unter Normalbedingungen thermisch und—abgesehen von den Lithiumverbindungen 10, 11, 12, 14—auch luft- und hydrolysestabil sind.

Die sterische Überladung der Digermylsilylmethane 7, 8, 9, 13, 15, 16 bewirkt—wie im Falle der entsprechenden Trisilylmethane [2]—eine NMR-spektroskopisch erkennbare Rotationsbehinderung um die ${}^{t}Bu_{2}SiX-CY(GeMe_{3})_{2}$ -Bindung. Die Newman-Projektion entlang dieser Bindung läßt die Möglichkeit von *trans-* und *gauche*-Konformeren erkennen (Abb. 1(a), 1(b)), wobei das *trans*-Rotamere ein einziges ¹H- bzw. ¹³C-NMR-Signal, das *gauche*-Rotamere jeweils zwei derartige Signale für die beiden Trimethylsilyl- und Trimethylgermylgruppen liefern sollte.

Tatsächlich beobachtet man im Falle der Verbindung 7 (X = Y = H, E = Ge in Abb. 1) verbreiterte ¹³C-NMR-Signale für die CMe3- und GeMe3-Methylkohlenstoffatome (Linienbreiten 2.28 und 5.71 Hz bei 52°C), die mit steigender Meßtemperatur schmäler werden. Dies spricht in Übereinstimmung mit NMR-Studien an 3 (X = Y = H, E = Si in Abb. 1) für eine gewisse Rotationsbehinderung um die ^tBu₂SiH-CH(EMe₃)₂-Bindung mit energetischer Bevorzugung der gauche-Konformation (Abb. 1(b)). Nur ist die Rotation im Falle von 7-wohl aus sterischen Gründen-weit weniger behindert als im Falle von 3; denn 3 liefert selbst im H-NMR-Spektrum jeweils 2 Protonensignale für die CMe₃- und SiMe₃-Gruppen, die mit steigender Temperatur aufeinander zulaufen und bei 100°C jeweils in ein scharfes Signal übergehen [2]. Demgegenüber weist 7 auch bei Raumtemperatur nur jeweils ein einziges Signal für die CMe₃- bzw. GeMe₃-Protonen auf. Innerhalb der 'H-NMR-Zeitskala erfolgt also die zur Diskussion stehende Rotation im Falle von 3 langsam, im Falle von 7 rasch.

Analoge Verhältnisse wie für 3 und 7 beobachtet man für das Verbindungspaar 5 und 9 (X = F, Y = H, E = Si und Ge in Abb. 1; vgl. [2] und Versuchsteil). Anders als 7 und 9 nehmen 8 und 15 (X = Br und Me, Y = H, E = Ge in Abb. 1) mit etwas sperrigeren Sigebundenen Substituenten offensichtlich die *trans*-Konformation ein (Abb. 1(a)), da jeweils scharfe ¹³C-NMR-Signale für die CMe₃- und GeMe₃-Methylkohlenstoffatome aufgefunden werden (Entsprechendes gilt wohl auch für 16; vgl. hierzu [2]).

Unter den Lithiumverbindungen (10, 11, 14) konnte 10 als Ditetrahydrofuran-Addukt 10 · 2THF kristallin isoliert werden (in analoger Weise ließ sich 6 als Ditetrahydrofuran-Addukt ¹Bu₂SiF-CLi(SiMe₃)₂ · 2THF=6 ·2THF kristallin isolieren). Der Verbindung kommt laut Röntgenstrukturanalyse (s.u.) gauche-Konformation zu $(X = F, Y = Li(THF)_2, E = Ge in Abb. 1)$. In Et₂O- bzw. C₆D₆-Lösung liegt $10 \cdot 2$ THF (analog $6 \cdot$ 2THF) möglicherweise in der trans-Konformation vor, da die Verbindung jeweils ein scharfes ¹H- und ¹³C-NMR-Signal für die GeMe₃- bzw. CMe₃-Methylgruppen liefert. Das im Medium THF von ihr aufgenommene Li-NMR-Spektrum deutet aufgrund der kleinen Linienbreite des Lithiumsignals von nur 0.427 Hz auf eine symmetrische Koordination des Lithiums mit 4 THF-Molekülen hin (Linienbreite des ⁷Li-NMR-Signals von 10 · 2THF in C_6D_6 : 9.03 Hz, von 6 · 2THF in C_6D_6 : 13.34 Hz). Der Verbindung kommt hiernach in THF wohl ein ionischer Bau [Li(THF)₄]⁺['Bu₂SiF- $C(GeMe_3)_2$ wie der Substanz $6 \cdot 2K$ zu. Eine entsprechende Struktur hat auch ${}^{t}Bu_{2}SiF-CLi(SiMe_{3})_{2}$ (6) in THF. Während aber die SiMe₃-Gruppen in letzterer Substanz zwei ¹H-NMR-Signale liefern, beobachtet man für erstere Substanz nur ein einziges GeMe₃-Protonensignal (beide Verbindungen weisen nur ein 'H-NMR-Signal für die CMe₃-Protonen auf). Geht man somit davon aus, daß der negativ geladene Kohlenstoff in $[{}^{t}Bu_{2}SiF-C(EMe_{3})_{2}]^{-}$ trigonal-planar von Silylbzw. Germyl- und Silvlgruppen umgeben ist, so deuten die NMR-Ergebnisse auf die in Abb. 2(a) bzw. 2(b) (X = F) wiedergegebene Konformation des Anions mit E = Si bzw. E = Ge. Allerdings lassen sich die 'H-NMR-Ergebnisse im Falle von $[{}^{t}Bu_{2}SiF-C(GeMe_{3})_{2}]^{-}$ sinnvoller durch rasche Rotation der ^tBu₂SiF- und C(GeMe₃)₂-Gruppen um die gemeinsame SiC-Bindung deuten [8].

Eine ähnliche Struktur wie $10 \cdot 2$ THF (Einzelheiten unten) besitzt wohl auch das aus 10 in Anwesenheit von Tetramethylethylendiamin (TMEDA) hervorgehende Addukt $10 \cdot \text{TMEDA}$. Die Anzahl *n* der Ethermoleküle der Verbindung $10 \cdot n\text{OEt}_2$, die als Folge der Einwirkung von MeLi auf ^tBu₂SiF-C(GeMe₃)₂(SnMe₃) im Medium Diethylether entsteht, konnte noch nicht sicher bestimmt werden. Bei der Einwirkung von überschüssigem MeLi auf $10 \cdot n\text{OEt}_2$ in Et₂O bei Raumtemperatur erhält man das Addukt $14 \cdot \text{OEt}_2$. Ihm kommt wohl wie dem durch Einwirkung von MeLi und

Abb. 2. Konformationen von $[{}^{t}Bu_{2}SiX-C(EMe_{3})_{2}]^{-}$ (E = Si, Ge; Newman-Projektion entlang der SiC-Bindungsachse).

 $(Me_2N)_3PO$ auf $^{1}Bu_2SiH-CH(GeMe_3)_2$ in Et_2O/THF bei Raumtemperatur zugänglichen Addukt **11** · OP(NMe_2)_3 eine oligomere Struktur zu (vgl. Lit. [9]).

4. Reaktivität der Digermylsilylmethane und -methanide 7–16

Chemisch aktive Zentren der Digermylsilylmethane und -methanide 7–16 bilden die Si-X- und C-Y-Gruppen. Sie setzen sich mit geeigneten Reaktanden u.a. unter elektrophiler, radikalischer (homophiler) und/oder nucleophiler Substitution von X bzw. Y um.

4.1. Elektrophile Y-Substitution

Elektrophile Y-Substitutionen stellen etwa die oben behandelten Lithiierungen von ${}^{1}Bu_{2}SiX-CH(GeMe_{3})_{2}$ (7, 8, 9, 15) mit MeLi in THF dar (elektrophiler H/Li-Austausch gemäß Gl. 5). Zum gleichen Substitutionstypus sind des weiteren die zu 16 bzw. 17a führenden Umsetzungen von 10 · 2THF mit Br₂ bzw. Me₃SnCl zu zählen (elektrophiler Li/Br- bzw. Li/SnMe₃-Austausch gemäß Gl. 6).

$$\gtrsim$$
CH + MeLi $\longrightarrow \gtrsim$ CLi + MeH (5)

$$ECLi + RHal \xrightarrow{RHal z.B.} ECR + LiHal \qquad (6)$$

Während Me₃SnCl hinsichtlich $10 \cdot 2$ THF in Et₂O bei Raumtemperatur als sehr gutes Stannylierungsreagens wirkt (quantitative Ausbeute an 17a), kommen den Verbindungen Me₃GeCl bzw. Me₃SiCl-sterisch bedingt-nur mäßige Germylierungs- bzw. schlechte Silylierungsqualität unter gleichen Bedingungen zu (ca. 20% 17b, 0% 17c). Im Falle der Me₃GeCl-Einwirkung auf 10 · 2THF in Et₂O bildet sich-neben anderen Produkten-zudem GeMe₄, was damit erklärt werden kann, daß 10.2THF hinsichtlich Me3GeCl eine Quelle für MeLi darstellt (schematisch: $10 \rightarrow Me_2Ge=C(GeMe_3)$ - $(SiF^{t}Bu_{2}) + MeLi; Me_{3}GeCl + MeLi \rightarrow GeMe_{4} + LiCl$ [10]). Im Falle der Einwirkung von Me₃SiCl auf $10 \cdot$ 2THF in Et₂O kommt es zu einer THF-Spaltung gemäß $C_4H_8O + Me_3SiCl \rightarrow Me_3SiOCH_2CH_2CH_2CH_2CI$ wobei das gebildete Chloralkan mit 10.2THF unter Bildung von 18 abreagiert (elektrophiler Li/R-Austausch).

4.2. Radikalische Y-Substitution

Radikalische Y-Substitution beobachtet man als Folge der Einwirkung von ¹Bu₃SiNa auf ¹Bu₂SiF-CBr $(GeMe_3)_2$ (16) in Et₂O bei Raumtemperatur. Hier unterbleibt der ebenfalls denkbare elektrophile Br/Na-Austausch aus sterischen Gründen. Statt dessen bilden sich offensichtlich nach Gl. (7; E = Ge) einerseits "Supersilylradikale" ^tBu₃Si⁻, die sich durch

$$\begin{array}{c} Bu_{3}SiNa + {}^{t}Bu_{2}SiF - CBr(EMe_{3})_{2} \\ \xrightarrow{(E=Si, Ge)} {}^{t}Bu_{3}Si + {}^{t}Bu_{2}SiF - C(EMe_{3})_{2} \end{array}$$
(7)

H-Abstraktion aus der chemischen Umgebung, durch Dimerisierung und durch Br-Abstraktion aus **16** in Form von ¹Bu₃SiH, ¹Bu₃Si-Si¹Bu₃ und ¹Bu₃SiBr stabilisieren, andererseits Radikale ¹Bu₂SiF-C(GeMe₃)₂, die sich ihrerseits durch H-Abstraktion bzw. im Zuge komplexer Reaktionen unter Bildung von ¹Bu₂SiF-CH-(GeMe₃)₂ (9) bzw. **19b** und **20b** absättigen. Die Bildung letzterer beiden Produkte geht wohl gemäß Gl. (8) auf einen intramolekularen H-Übergang und eine Alkylgruppenumlagerung des hierbei erhaltenen Produkts **21b** in **22b** zurück:

$$\begin{array}{c} \begin{array}{c} & & & \\ -Si - C & \longrightarrow & -Si - C \\ Me_{2}C & & H \\ CH_{2} \end{array} \end{array} \xrightarrow{H} \qquad Me_{2}C & H \\ CH_{2} \end{array}$$

$$\begin{array}{c} & & \\ Me_{2}C & H \\ CH_{2} \end{array} \qquad (8) \\ H_{2}C & H \\ CMe_{2} \end{array}$$

Für die weiteren Reaktionen von 22b sind mehrere Möglichkeiten denkbar. Z.B. könnte das Radikal unter H-Abgabe an 'Bu₃Si' in 19b oder aber unter Br-Aufnahme aus 16 in 23b übergehen. Die Verbindung 23b sollte dann nach Reaktion mit 'Bu₃SiNa unter Br/Na-Austausch (\rightarrow 24b) NaF eliminieren (\rightarrow 20b). 'BuSiF-CH(GeMe.)

$$H_{2}C = C \begin{pmatrix} CH_{2} & He_{2}CH(GeMe_{3})_{2} \\ H_{2}C = C \begin{pmatrix} CH_{2} & He_{2}C-CH_{2} \\ CH_{3} & 20a (E = Si) \\ 19b (E = Ge) \\ 19b (E = Ge) \\ ^{1}BuSiF - CH(GeMe_{3})_{2} & He_{2}C \\ & He_{2} & CH_{2} \\ & He_{2}C \\ CH_{2} & He_{2}C \\ 21a (E = Si) & 22a (E = Si) \\ 21b (E = Ge) & 22b (E = Ge) \\ ^{1}BuSiF - CH(GeMe_{3})_{2} \\ & He_{2}C \\ CH_{2} & He_{2}C \\$$

Die Verbindung ¹Bu₂SiF-CBr(SiMe₃)₂ reagiert mit ¹Bu₃SiNa erwartungsgemäß zu analogen Produkten wie ¹Bu₂SiF-CBr(GeMe₃)₂ (16) mit ¹Bu₃SiNa. Da aber das zunächst gebildete Radikal ¹Bu₂SiF-C(SiMe₃)₂ offensichtlich leichter (rascher) durch Einwirkung von ¹Bu₃SiNa auf ¹Bu₂SiF-CBr(SiMe₃)₂ gemäß Gl. (7; E = Si) entsteht und auch stabiler ist, erhält man mehr ¹Bu₃SiBr auf Kosten von ¹Bu₃SiH und ¹Bu₃Si-Si¹Bu₃ und mehr 19a + 20a auf Kosten von ¹Bu₃SiF-CH(SiMe₃)₂ (4). Die geringere Ausbeute an ¹Bu₃Si-Si¹Bu₃ spiegelt die kleinere Stationärkonzentration an ¹Bu₃SiF-CBr(SiMe₃)₂.

4.3. Elektrophile X-Substitution

Elektrophile X-Substitution beobachtet man z.B. als Folge der Halogenierung von ${}^{1}Bu_{2}SiH-CH(GeMe_{3})_{2}$ (7) mit Brom (s. oben):

$$\Rightarrow SiH + HalHal \longrightarrow \Rightarrow SiHal + HHal$$
(9)

4.4. Nucleophile X-Substitution

Nucleophile X-Substitutionen des Typus

$${}^{\prime}\text{Bu}_{2}\text{SiX}-\text{CY}(\text{GeMe}_{3})_{2} + \text{Nu}^{-}$$

$$\longrightarrow {}^{\prime}\text{Bu}_{2}\text{SiNu}-\text{CY}(\text{GeMe}_{3})_{2} + \text{X}^{-}$$
(10)

erfolgen im Zuge einer $S_N 2$ -Reaktion wegen der hohen Sperrigkeit der Substrate nur äußerst langsam (selbst weniger sperriges 'Bu₃SiCl reagiert etwa mit NaNH₂ in siedendem Toluol nicht [11]). Dementsprechend führt auch die 3.5tägige Umsetzung von 'Bu₂SiF-CH-(GeMe₃)₂ mit MeLi in THF bei 45°C nur zu einem elektrophilen H/Li-, doch zu keinem nucleophilen F/Me-Austausch. Besteht andererseits die in Gl. (11) aufgezeigte Möglichkeit einer nucleophilen X-Substitution, die näherungsweise als S_N1-Reaktion beschrieben werden kann, so lassen sich Umsetzungen des Typus (10) beobachten:

$$\stackrel{^{t}Bu_{2}Si \longrightarrow C(GeMe_{3})_{2}}{X} \stackrel{^{-LiX}}{\underset{(a)}{\overset{}}} \stackrel{^{t}Bu}{\underset{Bu}{\overset{}}} Si = C \stackrel{GeMe_{3}}{\underset{GeMe_{3}}{\overset{}}}$$

$$\stackrel{^{+LiNu}}{\underset{(b)}{\overset{}}} \stackrel{^{t}BuSi \longrightarrow C(GeMe_{3})_{2}}{\underset{U}{\overset{}}}$$

$$\stackrel{^{+LiNu}}{\underset{U}{\overset{}}} \stackrel{^{t}BuSi \longrightarrow C(GeMe_{3})_{2}}{\underset{U}{\overset{}}}$$

$$(11)$$

Da die Tendenz zur LiX-Eliminierung aus > SiX-CLi < (z.B. (Gl. 11a) mit abnehmender Basizität des Reaktionsmediums also in Richtung THF, OEt₂, C₆H₆, Alkane wächst [12], verwundert es nicht, daß sich 'Bu₂SiF-CLi(GeMe₃)₂ (als Et₂O- bzw. TMEDA-Addukt) bei der Einwirkung von RLi (R = Me, ⁿBu) in Benzol in die Lithiumverbindungen ^{'Bu₂SiR-CLi-(GeMe₃)₂ umwandelt [13]. Die Geschwindigkeit der LiX-Eliminierung aus > SiX-CLi < erhöht sich zudem beim Übergang von Verbindungen mit X = F zu solchen mit X = Br [12]. Demgemäß führt die Umsetzung von ^{'Bu₂SiBr-CH(GeMe₃)₂ (8) mit MeLi selbst in THF als Lösungsmittel auf dem Wege über ^{'Bu₂SiBr-CLi(GeMe₃)₂ direkt zu ^{'Bu₂SiMe-CLi-(GeMe₃)₂ (vgl. Unterkapital Darstellung).}}}}

5. Struktur von 10 · 2THF im Kristall

In den Kristallen von $10 \cdot 2$ THF liegen zwei kristallographisch unabhängige Moleküle vor, die sich nur geringfügig in konformativen Details unterscheiden. Tabelle 1 enthält wichtige Bindungsabstände und Winkel für beide Moleküle. Abb. 3 zeigt Ansichten der beiden Moleküle. Herausragendstes Merkmal der Molekülstruktur von $10 \cdot 2$ THF ist die Koordination des Li⁺-Gegenions an das carbanionoide C-Atom C1/C16. Damit unterscheidet sich $10 \cdot 2$ THF drastisch von der ansonsten ähnlichen Verbindungen $6a \cdot 2K$ [14], bei der es zu einer vollständigen Trennung von Carbanion und Li⁺-Gegenion durch die gute Li⁺-Komplexierung durch je zwei Moleküle 12-Krone-4 kommt. Als Konsequenz ist das carbanionoide C-Atom C1/C16 in $10 \cdot 2$ THF

Tabelle 1

Wichtige Abstände (Å) und Winkel (°) in der Molekülstruktur von 10.2THF mit Standardabweichungen in Einheiten der letzten signifikanten Stelle in Klammern. Chemisch äquivalente Werte der beiden kristallographisch unabhängigen Moleküle sind jeweils gegenübergestellt

Sil-Cl	1.83(1)	Si2-C16	1.82(1)
Sil-Fl	1.653(7)	Si2-F2	1.647(7)
Si1-C8	1.93(1)	Si2C23	1.93(1)
Si1-C12	1.93(1)	Si2-C27	1.962(8)
C1-Li1	2.21(2)	C16–Li2	2.16(2)
C1-Ge1	1.93(1)	C16-Ge4	1.95(1)
C1-Ge2	1.92(1)	C16-Ge3	1.92(1)
Li1-01	1.98(2)	Li2-04	2.02(2)
Li1-03	1.95(2)	Li2-02	1.95(2)
C1-Si1-F1	105.5(4)	C16-Si2-F2	107.0(4)
C1-Si1-C8	115.8(5)	C16-Si2-C23	113.8(5)
Cl-Sil-Cl2	120.4(5)	C16-Si2-C27	121.3(4)
C8-Si1-C12	112.0(5)	C23-Si2-C27	110.6(4)
F1-Si1-C8	98.5(4)	F2-Si2-C23	99.9(4)
F1-Si1-C12	100.4(5)	F2-Si2-C27	101.0(3)
Sil-Cl-Gel	116.3(5)	Si2-C16-Ge4	116.0(5)
Sil-Cl-Ge2	121.1(5)	Si2-C16-Ge3	121.3(1)
Sil-Cl-Lil	104.0(7)	Si2-C16-Li2	100.4(7)
Ge1-C1-Ge2	111.9(5)	Ge3-C16-Ge4	111.0(5)
Li1-C1-Ge1	94.8(6)	Li2-C16-Ge4	95.6(6)
Lil-Cl-Ge2	103.4(7)	Li2-C16-Ge3	108.2(7)
C1-Li1-01	130(1)	C16–Li2–O4	128(1)
C1-Li1-O3	132(1)	C16-Li2-O2	133(1)
01-Li1-03	98.1(8)	O2-Li2-O4	97.4(8)

Abb. 3. Strukturen der beiden kristallographisch unabhängigen Moleküle von 10.2THF im Kristall und verwendete Atomnumerierung (Schakal-Plot; Atome mit willkürlichen Radien; ohne H-Atome).

deutlich pyramidalisiert (Winkelsumme SiCGe₂ $349.4/348.3^{\circ}$), wogegen es in **6a** · 2K praktisch planar koordiniert ist. Das Lithium-Atom in 10 · 2THF ist insgesamt dreifach koordiniert. Seine Koordinationssphäre wird dabei durch die O-Atome zweier Moleküle Tetrahydrofuran (THF) ergänzt. Die Koordinationsgeometrie ist in sehr guter Nährung trigonal planar, wie die Winkelsumme nahe 360° (359.5/358.7°) unmittelbar belegt. Als Ursache der ungewöhnlich niedrigen Koordinationszahl des Lithiums in $10 \cdot 2$ THF muß sicher die sterische Überfrachtung der Moleküle gelten. So ist insbesondere die Orientierung der CLiO₂-Dreiecke in Bezug auf den Rest der Moleküle durch die Konformation der beiden GeMe3-Substituenten und einer der ¹Bu-Substituenten am Silicium gegeben, wie Abb. 4 deutlich zeigt. Auch kommt es insbesondere auf den "Vorder-" und "Rückseiten" der CLiO₂-Dreiecke zu mehreren relativ kurzen, nichtbindenden intramoleku-

Abb. 4. Newman-Projektionen der Molekülstruktur von 10.2THF entlang der C1/C16-Si-Bindungen.

laren Li-Kontakten mit H-Atomen der benachbarten Methylreste C4, C9 bzw. C20, C26, von denen die kürzesten LiH-Abstände bei 2.4 Å liegen. Somit wird klar, daß das Li-Atom zusätzlich zu den drei koordinierenden C- bzw. O-Atomen sehr effektiv durch van-der-Waals-Kontakte abgeschirmt wird. $10 \cdot 2$ THF gehört nach diesen Ergebnissen zu den wenigen monomeren Lithiumorganylen [15].

Besondere Bedeutung für die angestrebte LiF-Eliminierung aus 10 · 2THF kommt der relativen Oriertierung des Si-ständigen F-Atoms zum Lithium-Atom und dem intramolekularen Li-F-Abstand zu. Wie Abb. 4 zeigt, liegen die Vektoren C-Li und Si-F zwar nicht auf Deckung, die Torsionswinkel F-Si-C-Li betragen aber nur $-55.1/-46.1^{\circ}$, wobei auch hier die Gründe sicherlich zuerst in sterischen Wechselwirkungen zu suchen sind. Für eine (intramolekulare) Li-F-Eliminierung liegen somit aufgrund der Molekülkonformation bereits relativ günstige Voraussetzungen vor. Die intramolekularen Li ··· F-Abstände (3.33(2)/ 3.10(2) Å) schließen allerdings in 10 · 2THF eine wie auch immer bindende Wechselwirkung der beiden Atome eindeutig noch aus.

Einer detaillierten Diskussion der Bindungslängen und -winkel in 10 · 2THF stehen sicherlich die relativ großen Standardabweichungen im Wege. Dennoch verdienen einige Bindungslängen kurze Erwähnung. Insbesondere fällt auf, daß die Abstände Si1-C1/Si2-C16 mit 1.83(1)/1.82(1) Å geringfügig länger als die entsprechenden Abstände in $6a \cdot 2K$ sind (1.782(6))1.777(6) Å für die beiden unabhängigen Moleküle in $6a \cdot 2K$ [14]). In $6a \cdot 2K$ ließ sich die Bindungssituation als Lewis-Base-Addukt (F⁻) an ein Silaethen beschreiben, wobei die SiC-Bindung wegen des hohen Donorvermögens von Fluorid nur noch geringen Doppelbindungscharakter aufweist, aber-wegen ihrer Polarität-immer noch kürzer als eine Einfachbindung ist [14]. Im Gegensatz zu $6a \cdot 2K$ ist in $10 \cdot 2THF$ das carbanionoide Zentrum an Lithium koordiniert, was den SiC-Doppelbindungscharakter und die SiC-Bindungspolarität zusätzlich verringern muß. Damit im Einklang sind die SiC-Bindungen in 10 · 2THF länger als in 6a · 2K und nähern sich klassischen SiC-Einfachbindungsabständen. Die SiF-Bindungslange in 10 · 2THF unterscheidet sich dagegen praktisch nicht von der in $6a \cdot 2K$. Die LiC-Bindung in $10 \cdot 2THF$ $(2.21(2)/2.16(2) \text{ \AA})$ liegt am oberen Ende für dreifachkoordiniertes Lithium. Hier spiegelt sich ebenfalls die große sterische Überfrachtung von 10 · 2THF unmittelbar wider.

6. Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. Die Synthese von ^tBu₃SiNa · 2THF [16] bzw. ^tBu₂SiF-CBr(SiMe₃)₂ [2] erfolgte nach Literaturvorschrift. ^tBu₂SiHF wurde---in Abwandlung der Literaturvorschrift [17]-durch dreistündiges Erwärmen von 5.50 g (70.5 mmol) KHF₂, 2.04 g (35.2 mmol) KF und 12.60 g (70.5 mmol) ¹Bu₂SiHCl [17] auf 70°C in guantitativer Ausbeute dargestellt. Nach Abkondensation aller im Ölpumpenvakuum flüchtigen Anteile und Destillation des Kondensats bei Normaldruck erhält man bei 129°C 10.32 g (90%) ¹Bu₂SiHF als farblose Flüssigkeit [¹H-NMR $(C_6H_6, \text{ iTMS}): \delta = 0.975 \text{ (d; } J = 1.22 \text{ Hz; } \text{Si}^{t}\text{Bu}_2),$ 4.308 (d; J = 48.4 Hz; SiH); (CCl₄, iTMS): $\delta = 1.039$ (d; J = 1.22; Si¹Bu₂), 4.143 (d; J = 48.1 Hz; SiH). ¹³C-NMR (C₆D₆, iTMS): $\delta = 19.36$ (d, J = 11.23 Hz; 2CMe₃), 26.47 (d, J = 1.47 Hz; 2CMe₃). ²⁹Si-NMR $(C_6H_6, eTMS): \delta = 23.66 (d; J = 305.7 Hz; ^{t}Bu_2SiHF).$ ¹⁹ F-NMR (C₆D₆, eCFCl₃ in [D₆]-Aceton): $\delta = -188.2$ (d; J = 41.6 Hz; SiF)]. Zur Verfügung standen Me₃SiCl, Me₃GeCl, Me₃SnCl, Lithiumorganyle, Me₂NCH₂CH₂-NMe₂ (TMEDA), Br₂, 18-Krone-6, (Me₃N)₃PO.

Die NMR-Spektren wurden mit Multikerninstrumenten Jeol FX 90 Q, Jeol GSX 270, Jeol EX 400 aufgenommen. Die Bestimmung der Zahl n der Donoren ¹Bu₂SiX-CLi(GeMe₃)₂ \cdot *n*Do erfolgte durch Flächenintegration der ¹H-NMR-Signale der Verbindungen, in einem Falle $(10 \cdot 2THF)$ zudem durch Röntgenstrukturanalyse (s.u.). Zur weiteren Identifizierung der Lithiumverbindungen wurden diese mit H₂O oder MeOH in ¹Bu₂SiX-CH(GeMe₃)₂ überführt. Die Produkttrennungen erfolgten in einigen Fällen durch HPLC mit einem Gerät 600 der Firma Waters (Säule $21.2 \times 250 \text{ mm}^2$; Füllung Zorbax C18; Fluß 20 ml min^{-1} ; Detektion: UV bei 230 nm, Refraktometrie). Die Molmassen sowie Zusammensetzungen der isolierten Verbindungen wurden anhand der Masse und des Isotopenmusters der M⁺- und Bruchstück-Peaks massenspektrometrisch (Varian CH 7) überprüft.

6.1. Darstellung von $(Me_3Ge)_2$ CHBr und $(Me_3Ge)_2$ CHLi

(a) Zu einer auf -78° C gekühlten Lösung von 7.4 ml (60 mmol) Me₃GeCl und 2.2 ml (25 mmol) CHBr₃ in 500 ml THF werden unter kräftigem Rühren 50 mmol "BuLi in 60 ml THF/20 ml Hexan getropft. Nach 48 h erwärmt man auf Raumtemperatur, kondensiert alle bei 10 mbar flüchtigen Anteile ab und destilliert anschließend den Rückstand. Bei 97-98°C/20 mbar 7.0 g (21.3 mmol, 85%) farbloses, flüssiges Brom-bis(trimethylgermyl)methan (Me₃Ge)₂CHBr. ¹H-NMR (C_6D_6 , iTMS): $\delta = 0.207$ (s; 2GeMe₃), 2.353 (s; CH); (THF, iTMS): $\delta = 0.279$ (s; 2GeMe₃), 2.672 (s; CH). $C_7H_{19}BrGe_2$ (328.3): Ber. C 25.60, H 5.83; gef. C 27.10, H 5.94; Molmasse 328 (MS). Anmerkung: Erwärmt man die oben erwähnte Lösung nach 14 h von -78° C auf -60° C, so liegen—laut ¹H-NMR folgende Produkte vor: 8% Me₃GeCl, 20% Me₃Ge-("Bu), 45% (Me₃Ge)₂CHBr, 11% (Me₃Ge)CHBr₂ [18], 16% (Me₃Ge)CHBr("Bu). Demnach reagiert bei -60° C das nach > CHBr + "BuLi \rightarrow > CHLi + "BuBr gebildete Lithiumorganyl nicht nur mit Me₃GeCl, sondern auch mit entstandenem "BuBr; zudem setzt sich ⁿBuLi und Me₃GeCl um.

(b) Zu einer auf -78° C gekühlten Lösung von 7.10 g (21.7 mmol) (Me₃Ge)₂CHBr in 20 ml Et₂O tropft man unter Rühren zügig 21.70 mmol ⁿBuLi in 10 ml Et₂O/14 ml Hexan. Man kondensiert im Zuge des Erwärmens auf Raumtemperatur alle im Ölpumpenvakuum flüchtigen Anteile ab. Es verbleibt (Me₃Ge)₂-CHLi · 0.5 Et₂O als gelbe Flüssigkeit, die beim Erhitzen auf 60°C in farbloses, festes Bis(trimethylgermyl)methyllithium (Me₃Ge)₂CHLi übergeht. ¹H-NMR (C₆D₆, iTMS) des Etherats: $\delta = 0.292$ (s; 2GeMe₃), -2.265 (s; CH), 0.956/3.281 (q/t; CH₂CH₃); (Et₂O, iTMS): $\delta = 0.169$ (s; 2GeMe₃), -1.952 (s; CH), verdeckt (CH₂CH₃). Anmerkung Methanol führt (Me₃Ge)₂CHLi in (Me₃Ge)₂CHLi über [Identifizierung durch Vergleich

mit authentischer Probe [18]. ¹H-NMR (C_6D_6 , iTMS): $\delta = 0.178/-0.136$ (2GeMe₃/CH); (Et₂O, iTMS): 0.157/-0.050 (2GeMe₃/CH)].

6.2. Darstellung von 7, 11, 12, 13

(a) Etherfreies (Me₃Ge)₂CHLi (aus 17.9 mmol $(Me_3Ge)_2$ CHBr und ⁿBuLi; s.o.) und 3.74 g (17.9 mmol) 'Bu₂SiHF werden im Bombenrohr 12 h auf 130°C erhitzt. Man nimmt das auf Raumtemperatur abgekühlte Gemisch in Pentan auf, filtriert LiF ab, zieht alles im Hochvakuum Flüchtige ab und destilliert anschließend den Rückstand. Bei 80-100°C/Hochvakuum 6.4 g (13.7 mmol; 77%) farbloses, festes (Di-tertbutylsilyl)bis(trimethylgermyl)methan (7), Schmp. 36°-37°C. ¹H-NMR ($C_6 D_6$, iTMS): $\delta = 0.330$ (s; 2GeMe₃), 1.080 (s; 2^tBu), -0.455 (s; CH), 3.847 (s; SiH); (Et₂O, iTMS): $\delta = 0.296$ (s; 2GeMe₃), 1.057 (s; 2^tBu), -0.472(s; CH), 3.742 (s; SiH); (CCl₄, iTMS): $\delta = 0.270$ (s; 2GeMe₃), 1.033 (s; 2'Bu), -0.526 (s; CH), 3.659 (s; SiH). ¹³C{¹H}-NMR (C₆D₆, iTMS, 52°C): $\delta = 3.70$ (Linienbreite = 5.71 Hz; 2GeMe₃), -2.57 (CH), 19.54 (CMe_3) , 30.26 (Linienbreite = 2.28 Hz; CMe_3). C₁₅H₃₅Ge₂Si (391.6): Ber. C 46.00, H 9.78; gef. C 46.51, H 10.14; Molmasse 392 (MS).

(b) Erwärmen von 0.39 g (1.00 mmol) 7 und 2.00 mmol MeLi in 0.7 ml THF/1.2 ml Et₂O auf 60°C führt -laut ¹H-NMR-hauptsächlich zur Zersetzung von THF in $CH_2 = CH_2$ und $CH_2 = CHOLi$ (für Identifizierung vgl. Darstellung von 10) und nur untergeordnet zu 11 [$\delta = 0.068/0.044$ (s/s; 2GeMe₃), 0.983 (s; 2^tBu)] und 12 [$\delta = 0.054$ (s; GeMe₃), 1.002 (s; 2^tBu), -0.560 (s; CH)]. Nach 5 Tagen bei 60°C 9% 11 und 11% 12 (vollständiger Verbrauch an MeLi nach 10 Tagen). Auf Zusatz von MeOH bildet sich aus letzteren Produkten 7 (Identifizierung oben) und ^tBu₂SiH-CH₂(GeMe₃). Trennung durch HPLC mit MeOH als mobiler Phase: Retentionen 9.5 min (13), 14.0 min (7). (Di-tert-butylsilyl)(trimethylgermyl)methan (13), farblose Flüssigkeit. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.245$ (s; GeMe₃), 1.00 (s; 2^tBu), -0.285 (d; J = 2.93 Hz; CH_2), 3.59 (t; SiH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 0.282$ (GeMe₃), -7.25 (CH₂), 18.63 (2 CMe₃), 28.82 (2CMe₃). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 10.49$ $(Si^{t}Bu_{2}).$

6.3. Darstellung und Lithierung von 8, 14, 15

(a) Zu einer auf 0°C gekühlten Lösung von 1.28 g (3.26 mmol) 7 in 20 ml CCl₄ tropft man unter kräftigem Rühren 0.20 ml (3.88 mmol) Br₂ in 10 ml CCl₄, kondensiert nach 30 min alle im Ölpumpenvakuum flüchtigen Anteile ab und sublimiert den Rückstand. Bei 120°C/Hochvakuum farbloses Brom(di-tert-butylsilyl)bis(trimethylgermyl)methan (8) in quantitativer Ausbeute; 1.45 g (3.08 mmol, 94.5%) farblose Kristalle aus Pentan bei -78° C, Schmp. 152°C. ¹H-NMR (C₆D₆, 26 EMG₃), 0.085 (s, CH), (CC1₄, TMB): 0 = 1.125 (s, 2'Bu), 0.387 (s; 2GeMe₃), 0.040 (s; CH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 6.01$ (2GeMe₃), 1.52 (CH), 23.49 (2CMe₃), 29.51 (2CMe₃). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 46.89$ (Si'Bu₂). C₁₅H₃₇BrGe₂Si (470.5): Ber. C 38.29, H 7.92; gef. C 39.10, H 7.94; Molmasse 470 (MS).

(b) Zu einer auf -78° C gekühlten Lösung von 0.50 g (1.06 mmol) **8** in 1.4 ml THF tropft man 2.12 mmol MeLi in 1.3 ml Et₂O, erwärmt auf Raumtemperatur und beläßt die Reaktionsmischung 10 Tage bei dieser Temperatur. Laut ¹H-NMR (Et₂O, iTMS) 80% (Di-tertbutylmethylsilyl)bis(trimethylgermyl)methyllithium-

Tetrahydrofuran (1/n) $(14 \cdot n\text{THF})$ [$\delta = 0.225$ (s; 2GeMe₃), 1.000 (s; 2^tBu), 0.002 (s; SiMe), 3.76/1.82 $(m/m; OCH_2CH_2 \text{ von THF}), [14]], 20\% 15 (s.u.)$ neben $CH_2 = CH_2$ und $CH_2 = CHOLi$ (Identifizierung vgl. Darstellung von 10). Man fügt zur Lösung 0.5 ml MeOH, zieht alle im Olpumpenvakuum flüchtigen Anteile ab und sublimiert den Rückstand. Bei 80-100°C/Hochvakuum 0.41 g (1.01 mmol; 95%) farbloses kristallines (Di-tert-butylmethylsilyl)bis(trimethylgermyl)methan (15). ¹H-NMR (C₆D₆, iTMS): $\delta =$ 0.355 (s; 2GeMe₃), 1.023 (s; 2^tBu), 0.148 (s; SiMe), -0.332 (s; CH); (Et₂O, iTMS): $\delta = 0.344$ (s; 2GeMe₃), 1.021 (s; 2'Bu), 0.150 (s; 2SiMe), -0.323 (s; CH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 5.70$ (2GeMe₃), -0.99 (CH), 20.36 (2CMe₃), 29.92 (2CMe₃), 2.09 (SiMe). ²⁹Si-NMR (C_6D_6 , eTMS): $\delta = 14.54$ (Si⁺Bu₂). C₁₆H₄₀Ge₂Si (405.7): Ber. C 47.37, H 9.94; gef. C 49.61 H 10.35; MS: m/z 405 (M⁺-H). Anmerkung: Nach 24 h bei Raumtemperatur enthält eine Lösung von 1.00 mmol 8 und 1.85 mol MeLi in 10 ml THF/3 ml Et₂O 42% 14, 23% 15 und 35% unumgesetztes 8.

6.4. Darstellung von 9, 10, 16

(a) Man setzt 2.69 g (5.71 mmol) 8 mit 0.45 g (5.76 mmol) KHF₂ 3 h in 35 ml siedendem MeOH oder mit 6.23 g (107 mmol) KF 3 Tage in 150 ml $C_6 H_6 / 0.27$ mmol 18-Krone-6 bei Raumtemperatur um, kondensiert alle im Olpumpenvakuum flüchtigen Anteile ab, löst den Rückstand in Pentan, filtriert ungelöste Anteile ab und zieht Pentan ab. Es verbleibt (Di-tert-butylfluorsilyl)bis(trimethylgermyl)methan (9) in quantitativer Ausbeute; 2.20 g (5.37 mmol; 94%) farblose Kristalle aus Pentan bei -78° C, Schmp. 50°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 1.07$ (d; J = 1.22 Hz; 2^tBu), 0.352 (d; J = 0.49 Hz; 2GeMe₃), 0.005 (s; Linienbreite 1.5 Hz; CH); (Et₂O, iTMS): $\delta = 1.07$ (d; J = 1.22 Hz; 2^tBu), 0.325 (d; J = 0.73 Hz; 2GeMe₃), -0.001 (s; Linienbreite 1.5 Hz; CH). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta =$ 4.31 (breit, 2GeMe₃), 0.75 (d; J = 13.6 Hz; CH), 21.2 (d; J = 14.6 Hz, 2CMe₃), 28.58 (breit; 2CMe₃). ²⁹SiNMR (C_6D_6 , eTMS): $\delta = 31.33$ (d; J = 301.7 Hz; SiF¹Bu₂). ¹⁹F-NMR (C_6D_6 , eCFCl₃ in [D_6]-Aceton): -157.9 (SiF). $C_{15}H_{37}FGe_2Si$ (409.7): Ber. C 43.97, H 9.10, gef. C 44.35, H 9.20; MS: m/z 395 (M⁺-CH₃).

(b) Man gibt zu 4.05 g (9.90 mmol) 9 50 mmol MeLi in 30 ml Et₂O, kondensiert Et₂O im Ölpumpenvakuum ab, fügt zum Rückstand 30 ml THF und erwärmt die Lösung 66 h auf 45°C. Laut 'H-NMR vollständiger Umsatz von 9 in 10 (nach 14 h halber Umsatz) sowie Bildung von MeH ($\delta = 0.157$), CH₂ = CH₂ ($\delta = 5.340$) und CH₂=CHOLi [δ =3.13/3.51 (jeweils d von d; ${}^{2}J_{\text{HH}} = 1.46; {}^{3}J_{cis}/{}^{3}J_{trans} 5.12/\text{verdeckt; CH}_{2}$, 6.89 (d von d; ${}^{3}J_{cis/trans} = 5.12/13.42$ Hz; CH)] [19], ferner ca. 10 mmol unumgesetztes MeLi ($\delta = -2.17$). Das dunkelorangefarbene Reaktionsgemisch wird auf 0°C gekühlt und mit 5.7 ml (45 mmol) Me₁SiCl versetzt (zur Silylierung von $CH_2 = CHOLi$ und MeLi; Aufhellung der Farbe nach Gelb). Anschließend erwärmt man auf Raumtemperatur, kondensiert im Laufe von 2.5 h alle im Olpumpenvakuum flüchtigen Anteile ab, nimmt den Rückstand in 25 ml Et₂O auf, frittet LiCl ab, zieht Et₂O ab, nimmt den Rückstand in 20 ml Pentan/10 ml Et₂O auf, filtriert erneut LiCl ab und engt die Lösung auf ca. 20 ml ein. Aus der Lösung fallen bei langsamem Abkühlen auf -23° C im Laufe von 18 h 4.2 g (7.5 mmol, 76%) farbloses kristallines (Di-tert-butylfluorsilyl)bis(trimethylgermyl)methyllithium-Tetrahydrofuran (1/2) (10 · 2THF), Schmp. 100°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.537$ (d; J = 0.49 Hz; 2GeMe₁), 1.317 (d; J = 1.22 Hz; 2^tBu), 3.43/verdeckt (m/m; OCH₂CH₂) von 2THF); (Et₂O, iTMS): $\delta = 0.216$ (d; J = 0.48 Hz; 2GeMe₃), 1.06 (d; J = 1.22 Hz; 2^tBu), 3.81/1.89 (m/m; OCH₂CH₂ von 2THF); (THF, iTMS): $\delta =$ -0.026 (d; J = 0.73 Hz; 2GeMe₃), 0.919 (d; J = 1.22 Hz; 2'Bu), verdeckt (2THF). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 8.20$ (d; J = 1.96 Hz; 2GeMe₃), 23.15 (d; $J = 17.57 \text{ Hz}; 2C \text{ Me}_3), 30.36 \text{ (d}; J = 1.47 \text{ Hz}; 2C Me_3),$ 25.32/68.55 (CH₂CH₂O von 2THF). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 26.99$ (d; J = 285.6 Hz; SiF^tBu₂). ¹⁹F-NMR (C₆D₆, eCFCl₃ in [D₆]-Aceton): $\delta = -151.6$ (SiF). ⁷Li-NMR (C₆D₆, eLiCl in THF): $\delta = -0.26$ (Linienbreite 9.03 Hz; CLi(THF)₂); (THF, eLiCl in THF): $\delta = -1.05$ (Linienbreite 0.427 Hz; Li(THF)⁺₄). C₂₃H₅₂FGe₂LiO₂Si (559.9): Vgl. Röntgenstrukturanalyse unten. Anmerkung: (i) Setzt man 9 (1.16 mmol) nicht mit MeLi/THF bei 45°C, sondern mit MeLi (4.77 mmol) in Et₂O in Anwesentheit von TMEDA (6.62 mmol) bei 60°C um, so bilden sich in Tagen 'Bu₂SiF- $CLi(GeMe_3)_2 \cdot TMEDA$ (Identifizierung s.u.) und ¹Bu₂Si(CH₂GeMe₃)₂ im Molverhältnis ca. 1:2 neben den Zersetzungsprodukten von THF. Die Produkttrennung erfolgte nach Methanolzugabe, Abziehen aller im Olpumpenvakuum flüchtigen Anteile, Aufnehmen des Rests in Pentan, Abfiltration ungelöster Produkte, Aufnahme des Rückstands in 1 ml 'BuOMe durch HPLC mit MeOH als mobiler Phase: Retentionszeiten 12.0 min (9), 17.6 min (${}^{t}Bu_{2}Si(CH_{2}GeMe_{3})_{2}$). (Di-tertbutyl)bis(trimethylgermylmethyl)silan, farblose Kristalle, Sdp. 80° C/Hochvakuum. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.300$ (s; 2GeMe₃), 1.03 (s; 2^tBu), -0.070 (s; $2CH_2$; (Et₂O, iTMS): $\delta = 0.250$ (s; 2GeMe₃), 1.00 (s; 2'Bu), -0.070 (s; 2CH₂). ¹³C-NMR (C₆D₆, iTMS): $\delta = 2.23$ (q; 2GeMe₃), -2.60 (t; 2CH₂), 20.23 (s; $2CMe_3$, 29.37 (q; $2CMe_3$). (ii) Setzt man 2.504 g (7.82 mmol) $^{t}Bu_{2}SiF-CH(SiMe_{3})_{2}$ (5) und 14 mmol MeLi in 20 ml THF/10 ml Et₂O 3 Tage bei Raumtemperatur um, zieht alle flüchtigen Bestandteile ab, löst den Rückstand nach Waschen mit 10 ml Pentan in 50 ml Heptan und kühlt die Lösung auf -20° C, so kristallisiert farbloses $6 \cdot 2$ THF. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.509$ (s; 2SiMe₃), 1.349 (d; J = 1.22 Hz; 2'Bu), 1.254/3.506 (m/m; 2THF). ¹³C{¹H}-NMR $(C_6 D_6, \text{ iTMS}): \delta = 0.09 \text{ (d; } J = 18.59 \text{ Hz; CLi}), 8.47$ $(2SiMe_3)$, 23.40 (d; J = 17.95; 2CMe₃), 30.36 (d; J =1.93 Hz; $2CMe_3$), 25.23/68.65 (2THF). ²⁹Si-NMR $(C_6D_6, eTMS): \delta = 5.544 (s; 2SiMe_3), 31.47 (d; J =$ 281.4 Hz; ${}^{1}Bu_{2}Si$; ${}^{7}Li$ -NMR (C₆D₆, eLiCl in THF): $\delta = 0.813$ (Linienbreite 13.34 Hz).

(c) Zu einer auf -78° C gekühlten Lösung von 0.619 g (2.25 mmol) **10** · 2THF in 20 ml Et₂O werden 0.13 ml (2.52 mmol) Br₂ getropft. Man erwärmt langsam auf Raumtemperatur (Lösung enthält **16** in quantitativer Ausbeute), zieht alle im Ölpumpenvakuum flüchtigen Anteile ab, nimmt den Rest in 5 ml Pentan auf, frittet LiBr ab, kondensiert Pentan ab und destilliert den Rückstand. Bei 85–95°C 0.65 g (1.33 mmol, 59%) farbloses kristallines Brom(di-tert-butylfluorsilyl)bis(trimethylgermyl)methan (**16**), Schmp. 80°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.483$ (d; J = 0.98 Hz; 2GeMe₃), 1.200 (d; J = 1.22 Hz; 2'Bu). MS: m/z 473 (M⁺– CH₃).

6.5. Darstellung von ${}^{\prime}Bu_2SiX-CLi(GeMe_3)_2 \cdot nDo$

(a) Versetzt man 0.545 g (0.95 mmol) $10 \cdot 2$ THF in 10 ml Et₂O mit 1 ml (6.6 mmol) TMEDA und kühlt das Reaktionsgemisch nach 1 h auf -78°C, so erhält man (Di-tert-butylfluorsilyl)bis(trimethylgermyl)methyllithium-TMEDA (1/1) (10 · TMEDA) in Form farbloser Kristalle. ¹H-NMR (C_6D_6 , iTMS): $\delta = 0.483$ (breit, 2GeMe₃), 1.293 (d; J = 1.22 Hz, 2^tBu), 1.888 (s; 2NMe₂), 1.619 (s; 2CH₂); (Et₂O, iTMS): $\delta = 0.163$ (breit, 2GeMe₃), verdeckt (2^tBu), 2.302 (s; 2NMe₂), 2.430 (s; 2CH₂). ${}^{13}C{}^{1}H{}$ -NMR (C₆D₆, iTMS): $\delta = 8.98$ (d; J = 1.71 Hz; 2GeMe₃), 2.51 (d; J = 32.1 Hz; CGe_2Si , 23.23 (d; J = 17.1 Hz; $2CMe_3$), 30.60 (d; J = 1.29 Hz; 2CMe₃), 40.59 (s; 2NMe₂), 57.06 (s; $2CH_2$). ²⁹Si-NMR (C_6D_6 , eTMS): $\delta = 27.02$ (d; J =285.6 Hz; SiF). ¹⁹ F-NMR (C_6D_6 , eLiCl in [D_6]-Aceton): $\delta = -148.0$ (SiF). ⁷Li-NMŘ (C₆D₆, eLiCl in THF): $\delta = 1.41$ (Linienbreite 10.6 Hz; Li(TMEDA)). C₂₁H₂₂FGe₂LiNSi (531.8): Vgl. Röntgenstrukturanalyse von $10 \cdot 2$ THF.

(b) Eine Lösung von 0.10 g (0.13 mmol) ^tBu₂SiF- $C(GeMe_3)_2(SnMe_3)$ in 1 ml Et₂O und 0.77 mmol MeLi in 0.5 ml Et₂O enthält nach 2.5 Tagen Reaktionszeit bei Raumtemperatur neben MeLi und SnMe₄ (Identifizierung durch Vergleich mit authentischen Proben) ausschließlich (Di-tert-butylfluorsilyl)bis(trimethylgermyl)methyllithium–Diethylether(1/n) (10 · *n*THF) [¹H-NMR (iTMS): $\delta = 0.226$ (d; J = 0.49 Hz; $2GeMe_3$), 1.071 (d; J = 1.22 Hz; $2^{t}Bu$), verdeckt (Et_2O)]. Nach Ersatz von Et_2O durch C_6D_6 liegt in der Lösung 12 h später-laut ¹H-NMR-anstelle ¹Bu₂SiF- $CLi(GeMe_3)_2 \cdot nOEt_2$ die Verbindung ¹Bu₂SiMe- $CLi(GeMe_3)_2 \cdot nOEt_2$ vor. Man versetzt die Lösung mit 0.06 ml Me₃SiCl (Entfernung von überschüssigem MeLi als SiMe₄ und LiCl), zieht alle im Ölpumpenvakuum flüchtigen Anteile ab, löst den Rückstand in C₆D₆ und filtriert unlösliche Bestandteile ab. Es verbleibt hauptsächlich (Di-tert-butylmethylsilyl)bis(trimethylgermyl)methyllithium–Diethylether (1/1) $(14 \cdot OEt_2)$: ^TH-NMR (Et₂O, iTMS): $\delta = 0.002$ (s, SiMe), 0.234 (s; 2GeMe₃), 1.00 (s; 2'Bu), verdeckt (Et₂O); (C_6D_6 , iTMS): $\delta = 0.253$ (s; SiMe), 0.499 (s; 2GeMe₃), 1.22 (s; $2^{t}Bu$), 0.717/2.98 (t/q; $2CH_{3}CH_{2}$). ${}^{13}C{}^{1}H$ -NMR $(C_6 D_6, \text{ iTMS}): \delta = 9.16 \text{ (2GeMe_3)}, -6.74 \text{ (CGe}_2 \text{Si}),$ 22.07 (2CMe₃), 31.39 (2CMe₃), 0.43 (SiMe), 14.27/65.52 (2CH₃CH₂).

(c) Zu einer Lösung von 1.96 g (5.00 mmol) 13 in 6 ml THF/3.0 ml (Me₂N)₃PO werden langsam 10 mmol MeLi in 6 ml Et₂O gegeben. Laut ¹H-NMR quantitative Bildung von 'Bu₂SiH-CLi(GeMe₃)₂ · OP(NMe₂)₃. Man fügt nach 1 h 1.2 ml Me₃SiCl zur orangefarbenen Reaktionslösung (Entfernung von überschüssigem MeLi), kondensiert alle im Hochvakuum flüchtigen Anteile ab, nimmt den Rest mit Et₂O auf und filtriert unlösliches LiCl ab. ¹H-NMR (Et₂O, iTMS) der verbleibenden Et₂O-Lösung von (Di-tert-butylsilyl)bis-(trimethylgermyl)methyllithium-Hexamethylphosphorsäuretriamid (1/1) (11 · OP(NMe₃)₃): $\delta = -0.014/$ $0.022 (s/s; 2GeMe_3), 0.954 (s; 2^tBu), 2.40 (d; J = 9.5$ Hz; koordiniertes $(Me_2N)_3PO$), 2.60 (d; J = 9.5 Hz; freies (Me₂N)₃PO), 3.82 (s; SiH). Anmerkung: Zusatz von 0.51 ml Brom zur Lösung von 5 mmol des Addukts in Et₂O bei -78°C führt laut ¹H-NMR-Spektrum der Lösung nach Ersatz von Et₂O durch C₆D₆ zu ca. 60% ^{$^{1}}Bu₂SiH-CH(GeMe₃)₂ (Identifizierung oben) 20%</sup>$ ^{Bu₂SiH-CH₂GeMe₃ (Identifizierung oben) und 20%} einer nicht charakterisierten Substanz ($\delta = 0.447, 1.178;$ Signalflächenverhältnis 1:1), ferner zu einem $(Me_2N)_3$ PO-haltigen Produkt [$\delta = 2.48$ (d; J = 9.5 Hz; LiBr-Addukt?)], aber nicht zu 'Bu₂SiBr-CBr(GeMe₃)₂.

6.6. Umsetzung von $10 \cdot 2THF$ mit Me₃SnCl, Me₃GeCl, Me₃SiCl

(a) Zu einer auf -78° C gekühlten Lösung von 4.56 g (1.65 mmol) 10 · 2THF in 10 ml Et₂O werden 1.5 ml

249

(2.64 mmol) Me₃SnCl getropft. Man erwärmt auf Raumtemperatur (Lösung enthält 17a in quantitativer Ausbeute), zieht alle im Olpumpenvakuum flüchtigen Anteile ab, nimmt den Rest in 10 ml Et₂O auf, filtriert LiCl ab, kondensiert Et₂O ab und sublimiert den Rückstand. Bei 100-105°C 0.45 g (0.85 mmol, 51.8%) farbloses kristallines (Di-tert-butylfluorsilyl)bis(trimethylgermyl)(trimethylstannyl)methan (17a), Schmp. 221–227°C. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.428$ (d; J = 0.48 Hz; SnMe₃), 0.474 (d; J = 0.49 Hz; 2GeMe₃), 1.185 (d; J = 1.46 Hz; 2'Bu); (Et₂O, iTMS): $\delta = 0.375$ (d; J = 0.49 Hz; SnMe₃), 0.476 (d; J = 0.49 Hz; 2GeMe₃), verdeckt (2^tBu). $^{13}C{^1H}$ -NMR (C₆D₆, iTMS): $\delta = 9.15$ (d; J = 1.47 Hz; 2GeMe₃), 2.95 (d; J = 13.68 Hz; CGe₂SiSn), 24.11 (d; J = 13.67 Hz; 2*C*Me₃), 30.83 (d; J = 1.96 Hz; 2*C*Me₃), 3.55 (d; J = 1.95 Hz; SnMe₃). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 30.44$ (d; J = 308.1 Hz; SiF^tBu₂). ¹⁹F-NMR (C₆D₆, eCFCl₃ in [D₆]-Aceton): $\delta = -152.7$ (d von d; $J_{SiF} =$ 307.6 Hz; $J_{SnF} = 36.62$ Hz; SiF). $C_{18}H_{45}FGe_2SiSn$ (572.5): Ber. C 37.76, H 7.92; gef. C 38.24, H 8.21; MS: m/z 557 (M⁺–CH₃).

(b) Zu einer Lösung von 0.10 g (0.18 mmol) $10 \cdot$ 2THF in 1 ml Et_2O werden 0.044 ml (0.35 mmol) Me₃GeCl gespritzt, wonach sich langsam LiCl ausscheidet. Laut ¹H-NMR enthält die Lösung nach 1.5 h neben ca. 0.11 mmol Me₃GeCl, 0.07 mmol GeMe₄ $(\delta = 0.136;$ Identifizierung durch Vergleich mit authentischer Probe). Ferner sprechen die ¹H-NMR-Spektren in Et_2O bzw. C_6D_6 (jeweils iTMS) für die Bildung von ca. 20% 17b (s.u.) sowie von mindestens zwei weiteren Produkten (nicht charakterisiert). Nach Abkondensation aller im Ölpumpenvakuum flüchtigen Anteile, Lösen des Rests in Pentan, Abfiltrieren unlöslicher Anteile, Abziehen des Lösungsmittels, Lösen des Rückstands in 0.5 ml MeOH/0.5 ml 'BuOMe erfolgte die Trennung durch HPLC mit MeOH als mobiler Phase: Retentionszeit u.a. 23.83 min (17b). (Di-tert-butylfluorsilyl)tris-(trimethylgermyl)methan (17b), farbloser Feststoff. ¹H-NMR (C_6D_6 , iTMS): $\delta = 0.488$ (d; J = 0.49 Hz; $3GeMe_3$, 1.211 (d; J = 1.46 Hz; 2^tBu); (Et₂O, iTMS): $\delta = 0.447$ (d; J = 0.49 Hz; 3GeMe₃), 1.15 (d; J = 0.46Hz; $2^{t}Bu$). ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 9.88$ (3GeMe₃), nicht bestimmt (CGe₃, 2CMe₃), 31.33 (d; J = 1.95 Hz; 2CMe₃). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 30.73$ (d; J = 310.5 Hz; SiF). ¹⁹F-NMR (C₆D₆, eCFCl₃) in [D₆]-Aceton): $\delta = -154.4$ (SiF). MS: m/z 511 $(M^+-CH_3).$

(c) Zu einer Lösung von 0.42 g (0.75 mmol) $10 \cdot 2$ THF in 1 ml Et₂O werden 0.20 ml (1.50 mmol) Me₃SiCl gespritzt. Laut ¹H-NMR ist nach 17 h $10 \cdot 2$ THF vollständig verschwunden, und es haben sich—neben ca. 10% ¹Bu₂SiF-CH(GeMe₃)₂ (9; möglicherweise durch Protolyse von $10 \cdot 2$ THF durch HCl aus Me₃SiCl)—90% 19 gebildet, ferner 0.75 mmol Me₃SiO(CH₂)₄Cl (Identifizierung durch Vergleich mit

authentischer Probe [20]). Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Aufnahme des Rests in 10 ml Et₂O, Abfiltrieren ungelöster Anteile, Abziehen von Et₂O, Sublimieren des Rückstands bei 130°C, Lösen des Sublimats in 1 ml MeOH/1 ml ¹BuOMe erfolgte die Trennung durch HPLC mit MeOH als mobiler Phase: Retentionszeiten 8.6 min (23% $^{1}Bu_{2}SiF-C(GeMe_{3})_{2}(CH_{2})_{4}OH$, Identifizierung unten) 12.0 min (12% 9, Identifizierung oben), 20.4 min (65% 18). 5-(Di-tert-butylfluorsilyl)-5,5-bis(trimethylgermyl)pentanoltrimethylsilylester (18), farblose Kristalle. ¹H-NMR ($C_6 D_6$, iTMS): $\delta = 0.120$ (s; OSiMe₃), 0.428 (d; J = 0.48 Hz; 2GeMe₃), 1.18 (d; J = 1.22 Hz; 2^tBu); 1.42/2.01/2.01/3.53 (m/m/m/t; CH₂CH₂CH₂CH₂) CH₂O); (CDCl₃, iTMS): $\delta = 0.082$ (s; OSiMe₃), 0.343 $(d; J = 0.48 \text{ Hz}; 2\text{GeMe}_3); 1.11 (d; J = 1.46 \text{ Hz}; 2^t\text{Bu}),$ 1.49/1.88/1.88/3.53 (m/m/m/t; CH₂CH₂CH₂CH₂O). ${}^{13}C{}^{1}H{}$ -NMR (C₆D₆, iTMS): δ = 4.98 (d; J = 1.47 Hz; 2GeMe₃), 17.37 (d; J = 10.75Hz, CGe₂Si), 23.87 (d; J = 13.60 Hz; 2CMe₃), 30.48 (d; J = 1.96 Hz; 2C Me_3), 28.14/34.21/34.03/62.23 (d/d/breit/s; J = 3.91 Hz/1.95 Hz/klein/-; $CH_2CH_2CH_2CH_2O$, -0.30 (s; $OSiMe_3$). ²⁹Si-NMR $(C_6D_6, eTMS): \delta = 15.83 \text{ (s; OSiMe}_3), 31.17 \text{ (d; } J = 315.4 \text{ Hz; SiF}.$ ¹⁹F-NMR $(C_6D_6, eCFCl_3 \text{ in } [D_6]$ -Aceton): $\delta = -150.7$ (SiF). MS: m/z 539 (M⁺-CH₃). Anmerkung: Aufgefundenes farbloses 5-(Di-tertbutylfluorsilyl)-5,5-bis(trimethylgermyl)pentanol $(^{t}Bu_{2}SiF-C(GeMe_{3})_{2}(CH_{2})_{4}OH;$ Schmp. 72-74°C) entsteht durch Methanolyse von 18, wie unabhängig überprüft wurde. ¹H-NMR (C₆D₆; iTMS): 0.412 (d; J = 0.49 Hz; 2GeMe₃), 1.173 (d; J = 1.22 Hz; 2^tBu), 1.334/1.961/1.961/3.324 (m/m/m/t; $CH_2CH_2CH_2CH_2O$). ¹³C(¹H)-NMR (C₆D₆, iTMS): δ = 4.85 (d; J = 1.46 Hz; 2GeMe₃), 17.37 (d; J = 10.75Hz; CGe₂Si), 23.82 (d; J = 13.60 Hz; 2CMe₃), 30.41 (d; J = 2.00 Hz; $2CMe_3$), 27.85/34.40/33.99/62.40 $(d/d/breit/s; J = 3.91 Hz/1.95 Hz/klein/-; CH_2CH_2CH_2CH_2O)$. ²⁹Si-NMR (C₆D₆, eTMS): $\delta =$ 31.30 (d; J = 316.4 Hz; SiF). ¹⁹F-NMR (C₆D₆, eCFCl₃) in [D₆]-Aceton): $\delta = -150.7$ (SiF). C₁₉H₄₅FGe₂OSi (481.8): Ber. C 47.36, H. 9.41; gef. C 48.85, H 9.56; MS: m/z 467 (M⁺-CH₃).

6.7. Umsetzung von 16 bzw. ${}^{'}Bu_2SiF-CBr(SiMe_3)_2$ mit ${}^{'}Bu_3SiNa$

(a) Zu einer Lösung von 0.92 g (1.87 mmol) 16 in 10 ml Et₂O werden unter Rühren 1.87 mmol ¹Bu₃SiNa \cdot 2THF in 3 ml Et₂O getropft. Nach 18 h bei Raumtemperatur haben sich laut ¹H-NMR 21% ¹Bu₃SiBr, 10% ¹Bu₃SiH und 70% ¹Bu₃Si-Si¹Bu₃ (bezogen auf eingesetzes ¹Bu₃SiNa), ferner 55% 9, 30% 19b und 15% **20b** (bezogen auf eingesetztes 16) gebildet. Nach Abziehen aller im Ölpumpenvakuum flüchtigen Anteile, Aufnehmen des Rests in Pentan, Abfiltrieren unlöslicher Anteile, Abkondensieren von Pentan, Lösen des Rückstands in 0.5 ml MeOH/0.5 ml BuOMe erfolgte die Trennung durch HPLC mit MeOH/ t BuOMe = 90:10 als mobiler Phase: Retentionszeiten 7.18 min (19b; s.u.), 11.81 min [9, 20b; Nachtrennung mit MeOH als mobiler Phase: Retentionszeiten 12.00 min (9, Identifizierung oben), 13.60 min (20b, s.u.)], 26.87 min ('Bu₃Si-Si'Bu₃, Identifizierung durch Vergleich mit authentischer Probe [21]). 4-tert-Butyl-4-fluor-2-methyl-5,5-bis(trimethylgermyl)-4-sila-1-penten (19b), farblose Flässigkeit. ¹H-NMR (C₆D₆; iTMS): $\delta = -0.103$ (s; SiCH), 0.245 (d; J =klein; GeMe₃), 0.369 (d; J = 1.22Hz; GeMe₃), 1.05 (d; J = 0.98 Hz; Si^tBu), 1.85 (m; SiCH₂), 1.88 (d; J = 0.98 Hz; CCH₃), 4.79 (d; J = 0.73Hz; =CH₂). ¹³C{¹H}-NMR (C₆D₆, iTMS): δ = 2.86 (d; J = 2.44 Hz; GeMe₃), 3.35 (d; J = 0.96 Hz; GeMe₃), 0.900 (d; J = 11.60 Hz; SiCH), 20.39 (d; J = 14.04 Hz; CMe_3), 26.86 (d; J = 1.22 Hz; CMe_3), 27.91 (d; J =14.65 Hz; SiCH₂), 25.24 (d; J = 3.05 Hz; CCH₃), 142.8 (d; J = 1.22 Hz; =C <), 111.2 (d; J = 1.23 Hz; =CH₂). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 28.15$ (d; J =301.8 Hz; SiF). ¹⁹F-NMR (C_6D_6 , eCFCl₃ in [D_6]-Aceton); $\delta = -160.6$ (SiF). $C_{15}H_{35}FGe_2Si$ (407.7): Ber. C 44.19 H. 8.65; gef. C 42.81, H 8.42; MS: m/z 393 (M^+-CH_3) . 1-tert-Butyl-2,2-dimethyl-1-bis(trimethylgermyl)methyl-1-silacyclopropan (20b), farbloser Feststoff. ¹H-NMR (C₆D₆; iTMS): $\delta = -0.568$ (s; SiCH), 0.300/0.327 (s/s; GeMe₃/GeMe₃)), 0.467/ 0.468 (s/s; H/H von CH₂), 1.02 (s; ^tBu), 1.23/1.44 (s/s; Me/Me von CMe_2). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 2.19/2.54$ (GeMe₃/GeMe₃), -0.766 (SiCH), 19.07 (CMe₃), 29.87 (CMe₃), 14.65 (CH₂), $15.34 (CMe_2), 24.04/26.60 (Me/Me von CMe_2).$ Vgl. Anmerkung bei Verbindung 20a.

(b) Zu einer Lösung von 0.20 g (0.50 mmol) ^tBu₂SiF-CBr(SiMe₃)₂ in 7 ml Et₂O werden unter Rühren 0.50 mmol ¹Bu₃SiNa · 2THF in 3 ml Et₂O getropft. Nach 18 h bei Raumtemperatur haben sich laut ¹H-NMR 52% ^tBu₃SiBr, 28% ^tBu₃SiH und 20% ¹Bu₃Si-Si¹Bu₃ [21] (bezogen auf eingesetztes ¹Bu₃-SiNa), ferner 26% 5, 37% 19a und 37% 20a) (bezogen auf eingesetztes ${}^{1}Bu_{2}SiF-CBr(SiMe_{3})_{2}$) gebildet. Nach Abziehen aller im Ölpumpenvakuum flüchtigen Anteile, Aufnahme des Rests in Pentan, Abfiltrieren unlöslicher Anteile, Abkondensieren von Pentan, Lösen des Rückstands in 0.5 ml MeOH/0.5 ml ^tBuOMe erfolgte die Trennung durch HPLC mit MeOH als mobiler Phase; Retentionszeiten 8.4 min (^tBu₃SiBr), 9.6 min (19a, s.u.), 11.6 min (5; Identifizierung durch Vergleich mit authentischer Probe [2]), 12.8 min (20a; s.u.), 47.20 min ¹Bu₃SiH. 4-tert-Butyl-4-fluor-2-methyl-5,5-bis(trimethylsilyl)-4-sila-1-penten (19a), farblose Flüssigkeit. ¹H-NMR ($C_6 D_6$; iTMS): $\delta = -0.190$ (s; CH), 0.117 (breit; SiMe₃), 0.249 (d; J = 1.22 Hz; SiMe₃), 0.990 (d; J =0.98 Hz; Si'Bu), 1.88 (m; SiCH₂, CCH₃), 4.79 (m; =CH₂). ¹³C{¹H}-NMR (C₆D₆, iTMS): δ = 3.314 (d;

J = 3.00 Hz; SiMe₃), 3.713 (d; J = 0.96 Hz; SiMe₃), 2.88 (d; J = 11.11 Hz; Si₃CH), 20.70 (d; J = 14.10 Hz; CMe_3), 27.00 (d; J = 1.28 Hz; CMe_3), 27.48 (d; J =14.53 Hz; SiCH₂), 25.24 (d; J = 3.42 Hz; CCH₃), 142.8 (d; J = 0.85 Hz; = C <), 111.4 (d; J = 0.85 Hz; =CH₂); ²⁹Si-NMR (C₆D₆, eTMS): δ = 1.34 (d; J = 47.84 Hz; SiMe₃), 1.77 (d; J = 62.98 Hz; SiMe₃), 21.75 (d; J = 300.8 Hz; SiF). ¹⁹F-NMR (C₆D₆, eCFCl₃ in [D₆]-Aceton); $\delta = -160.6$ (d; J = 8.54 Hz; SiF). 1-tert-Butyl-2,2-dimethyl-1-bis(trimethylsilyl)methyl-1silacyclopropan (20a), farbloses Öl. ¹H-NMR ($C_6 D_6$; iTMS): $\delta = -0.723$ (s; CH), 0.181/0.211 (s/s; SiMe₃/SiMe₃), 0.49/0.50 (s/s; H/H von CH₂), 1.00 (s, ^tBu), 1.25/1.42 (s/s; Me/Me von CMe₂); (CDCl₃, iTMS): $\delta = -0.737$ (s; CH), 0.104/0.142 (s/s; $SiMe_3/SiMe_3$, 0.264/0.264 (s/s; H/H von CH₂), 1.003 (s; 'Bu), 1.08/1.26 (s/s; Me/Me von CMe₂). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 2.82/3.10$ (SiMe₃/SiMe₃), -7.02 (Si₃CH), 18.56 (CMe₃), 30.03 (C Me_3), 14.61 (CH₂), 15.30 (C Me₂), 26.65/28.42 (Me/Me von C Me_2). ²⁹Si-NMR (C₆D₆, iTMS): $\delta =$ 0.553/1.518 (SiMe₃/SiMe₃), -40.31 (Si^tBu). Molmasse 300 (MS). Anmerkung: Die Zuordnung der Kohlenstoffsignale von 20a erfolgte über ein ¹³C-DEPT-Spektrum (Pulswinkel 135°). Für das Vorliegen eines dreigliederigen SiC₂-Rings (Siliran) im Falle von 20a,b spricht die vergleichsweise hochfeldige Lage der C- und Si-Signale für die Ringgerüstatome, die man auch in anderen Siliranen sowie Cyclopropanen findet [22]. Aufgrund des asymmetrischen C-Ringatoms liefern die EMe₃- bzw. CH₂-Gruppen in 20a,b jeweils zwei Kohlenstoff bzw. Protonensignale. Offensichtlich liegen im Falle von 20a zwei Rotamere im Verhältnis 9:1 vor, da zusätzlich zum erwähnten Satz von ¹H-NMR-Signalen ein entsprechender zweiter Satz aufgefunden wird $[\delta = -0.939$ (s; CH), 0.406 (CH₂), 1.107 (s; ¹Bu), 1.223/1.391 (s/s; Me/Me von CMe₂)].

6.8. Umsetzung von 10 · TMEDA mit RLi

Zu 8.3 mmol "BuLi ohne Lösungsmittel bei – 196°C tropft man 0.371 g (0.663 mmol) 10 · TMEDA in 10 ml C₆H₆. Nach Erwärmen auf Raumtemperatur enthält die Lösung laut ¹H-NMR (iTMS) außer ⁿBuLi ($\delta =$ 1.000/1.407/1.407/-0.855 (t/m/m/t; CH₃CH₂- CH_2CH_2Li) nur ^tBu₂(ⁿBu)Si-CLi(GeMe₃)₂ [$\delta = 0.488$ (s; 2GeMe₃), 1.241 (s; 2^tBu)]. Zur Identifizierung wird mit Methanol versetzt und alles im Ölpumpenvakuum Flüchtige abgezogen. Die Destillation des Rückstands bei 80°C/Hochvakuum liefert farbloses, flüssiges ("Butyl-di-tert-butyl)bis(trimethylgermyl)-methan $(^{1}Bu_{2}(^{n}Bu)Si-CH(GeMe_{3})_{2})$. ¹H-NMR (C₆D₆, iTMS): $\delta = -0.261$ (s; CH), 0.395 (s; 2GeMe₃), 1.087 (s; 2'Bu), 0.940 (m; SiCH₂), 1.343 (m; CH₂CH₂CH₃); (CDCl₃, iTMS): $\delta = -0.353$ (s; CH), 0.308 (s; 2GeMe₃), 1.003 (s; 2^tBu), 0.858 (m; SiCH₂), 1.237 (m;

CH₂CH₂CH₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 6.06$ (2GeMe₃), -0.99 (CH), 20.76 (2CMe₃), 30.21 (2CMe₃), 14.91/27.35/27.94/13.89 (SiCH₂CH₂CH₂-CH₃). ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 14.05$ (Si¹Bu₂).

Tabelle 2

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter von 10·2THF mit Standardabweichungen in Einheiten der letzten signifikanten Stelle in Klammern. $(U_{ea} = 1/3\sum_i \sum_j U_{ij}a_i^*a_j^*a_ia_j)$

Atom	x	у	z	U _{eq}
Ge1	0.88289(5)	0.90140(7)	1.00000	0.024
Ge2	0.92841(5)	1.08931(7)	1.01359(9)	0.028
Ge3	0.68473(5)	0.64454(7)	0.9978(1)	0.030
Ge4	0.59453(6)	0.49080(9)	1.03872(9)	0.036
Sil	1.0173(1)	0.9531(2)	0.9255(2)	0.021
Si2	0.7330(1)	0.4559(2)	0.9652(2)	0.025
Fl	1.0029(3)	0.8720(4)	0.8711(4)	0.045
F2	0.7010(3)	0.3720(4)	0.9280(3)	0.034
Lil	0.8814(9)	1.005(1)	0.855(1)	0.037
Li2	0.6196(8)	0.520(1)	0.870(1)	0.032
Cl	0.9385(5)	0.9865(6)	0.9600(6)	0.024
C2	0.8987(5)	0.7904(7)	0.9653(7)	0.045
C3	0.8808(6)	0.8915(9)	1.1125(6)	0.054
C4	0.7926(5)	0.9199(8)	0.9680(7)	0.045
C5	0.8441(6)	1.1035(7)	1.057(1)	0.073
C6	0.9361(6)	1.1919(8)	0.9548(7)	0.052
C7	0.9891(7)	1.1064(9)	1.0988(7)	0.069
C8	1.0571(5)	1.0236(7)	0.8504(6)	0.029
C9	1.0050(5)	1.0537(7)	0.7958(7)	0.037
C10	1.0921(5)	1.0986(9)	0.8810(7)	0.058
C11	1.1073(6)	0.9764(9)	0.8043(7)	0.067
C12	1.0798(5)	0.9068(8)	0.9945(7)	0.045
C13	1.0464(5)	0.8689(7)	1.0626(6)	0.041
C14	1.1291(7)	0.9665(9)	1.0191(9)	0.089 ª
C15	1.1189(8)	0.838(1)	0.9522(9)	0.121
C16	0.6676(4)	0.5295(6)	0.9786(6)	0.024 ª
C17	0.7537(6)	0.6694(7)	1.0735(7)	0.046
C18	0.6108(5)	0.7073(7)	1.0404(8)	0.052
C19	0.7064(6)	0.7105(8)	0.9057(7)	0.049
C20	0.5124(5)	0.5404(8)	1.0037(8)	0.069
C21	0.5939(7)	0.521(1)	1.1488(7)	0.070
C22	0.5759(6)	0.3716(8)	1.0326(7)	0.060
C23	0.7923(5)	0.4860(7)	0.8853(5)	0.029
C24	0.8301(6)	0.4107(8)	0.8582(8)	0.065
C25	0.8388(5)	0.5539(8)	0.9051(6)	0.038
C26	0.7494(6)	0.5154(7)	0.8184(6)	0.040
C27	0.7796(3)	0.4090(4)	1.0519(4)	0.032
C281	0.8460(5)	0.4494(9)	1.0656(9)	0.054 °
C291	0.7877(7)	0.3143(6)	1.0413(9)	0.049
C301	0.7367(6)	0.4228(9)	1.1249(7)	0.038 °
C282	0.8351(8)	0.352(1)	1.020(1)	0.026
C292	0.814(1)	0.479(1)	1.098(1)	0.025
C302	0.738(1)	0.357(1)	1.107(1)	0.059
01	0.8523(3)	0.9240(4)	0.7789(4)	0.038
02	0.5825(4)	0.6012(5)	0.8020(4)	0.046
03	0.8348(3)	1.1013(5)	0.8170(4)	0.035
04	0.5810(3)	0.4183(4)	0.8214(4)	0.036
CIT	0.8859(5)	0.8518(7)	0.7494(7)	0.040
C21	0.8344(6)	0.7850(8)	0.7466(8)	0.053
C31	0.7702(5)	0.8335(8)	0.7340(9)	0.074
C41	0.7800(0)	0.9246(8)	0.7466(8)	0.065
	0.5312(7)	0.0057(9)	0.8148(9)	0.075
01	0.5177(9)	0.095(1)	0.732(1)	0.086
СЛ	0.2081(8)	0.662(1)	0.6793(9)	0.095

Tabelle 2 (continued)

Atom	x	у	z	U _{eq}	
C8T	0.6050(8)	0.604(1)	0.7211(7)	0.092	
C9T	0.7762(5)	1.1415(8)	0.8470(7)	0.051	
C10T	0.7976(7)	1.187(1)	0.7164(9)	0.105	
CIIT	0.7438(7)	1.1797(8)	0.7775(8)	0.066	
C12T	0.8514(6)	1.1330(9)	0.7438(7)	0.071	
C13T	0.6103(5)	0.3406(7)	0.7965(6)	0.044	
C14T	0.5560(7)	0.2989(9)	0.7486(7)	0.063	
C15T	0.4944(8)	0.328(1)	0.782(1)	0.082	
C16T	0.5098(6)	0.411(1)	0.814(1)	0.096	

^a Atom isotrop verfeinert. ^b Atom isotrop verfeinert; Besetzung 0.65. ^c Atom isotrop verfeinert; Besetzung 0.35.

6.9. Kristallstrukturanalyse von 10 · 2THF:

Enraf-Nonius CAD4-Diffraktometer, Mo K a-Strahlung, $\lambda = 0.71069$ Å, Graphit-Monochromator, T = -173° C. C₂₃H₅₂FGe₂LiO₂Si, $M_r = 559.873$, orthorhombisch, Raumgruppe $Pca2_1$ (Nr. 29), a =20.739(3), b = 16.184(5), c = 17.642(4) Å, V = 5921.4Å³, Z = 8, $D_{ber} = 1.256$ g cm⁻³, μ (Mo K α) = 20.6 cm⁻¹, F(000) = 2368 e. 7559 gemessene Reflexe, davon 6994 unabhängig und 4144 "beobachtet" mit $F_{0} \geq 4.0 \sigma(F_{0})$, die für alle weiteren Berechnungen verwendet wurden ($\vartheta/2\vartheta$ -Scans, $\Delta \omega = 0.6 + 0.36$ tan ϑ , Scan-Geschwindigkeit 1–10° min⁻¹, *hkl*-Bereich: +26, +20, +22, (sin ϑ/λ)_{max} = 0.645 Å⁻¹; nichtlineare Korrektur für Intensitätsabfall während der Datensammlung (-1.7%), Lp-Korrektur und analytische Absorptionskorrektur). Die genauen Zellkonstanten wurden durch Verfeinerung an den Bragg-Winkeln von 87 auf dem Diffraktometer zentrierten Reflexen erhalten. Reduzierte-Zellen-Berechnungen deuteten keine höhere metrische Zellsymmetrie an (DELOS [23], LePage [24]). Die Struktur wurde mit direkten Methoden in der Raumgruppe $Pca2_1$ gelöst (SHELXS-86 [25]) und mit Fouriersynthesen vervollständigt. 14 H-Atome konnten in Differenz-Synthesen lokalisiert werden, 49 wurden in idealisierten Positionen berechnet. Die H-Atome an allen vier unabhängigen Molekülen THF sowie an der fehlgeordneten ^tBu-Gruppe (C27) wurden vernachlässigt. Bei der Verfeinerung wurden die fehlgeordneten Methylgruppen an C27 isotrop in zwei Alternativen im Besetzungsverhältnis 65/35 mit vorgegebenen C-C- (1.55(1) Å) und $C \cdot \cdot C$ -Abständen (2.53(1) Å) verfeinert (restraints). Die C-Atome C14 und C16 konnten lediglich isotrop verfeinert werden, alle anderen Nicht-H-Atome wurden mit anisotropen Auslenkungsparametern verfeinert. Die H-Atome wurden als konstant in die Strukturfaktoren-Einsolub auf 5.15 berechnung miteinbezogen. Eine Verfeinerung der Struktur in der alternativen nichtzentrosymmetrischen Raumgruppe Pbcm (Nr. 57) war nicht möglich. Ausserdem wurden keine Symmetriebeziehungen zwischen den beiden kristallographisch unabhängigen Molekülen in Pca2₁ gefunden [26]. *R* (*wR*) = 0.057 (0.046), $w = 1/\sigma^2(F_o)$, für 527 verfeinerte Parameter in 2 großen Blöcken (SHELX-76 [27]). $\Delta \rho_{fin}$ (max/min) = 0.85/- 0.65 eÅ⁻³. Tabelle 2 enthält die Atomparameter, Tabelle 1 wichtige interatomare Abstände und Winkel [28].

Dank

Wir danken Herrn Prof. Dr. C. Krüger, Max-Planck-Institut für Kohlenforschung, Mühlheim a.d. Ruhr, für die Messung des kristallographischen Datensatzes. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie, Frankfurt (Main), sei für die finanzielle Unterstützung der Arbeiten gedankt.

Literatur und Bemerkungen

- 101. Mitteilung über Verbindungen des Siliciums und seiner Gruppenhomolgen. 100. Mitteilung: N. Wiberg, in B. Marciniec und J. Chojnowski (Hrsg.), Progress in Organosilicon Chemistry, Gordon and Breach, Amsterdam, 1995, pp. S. 19-39. 99. Mitteilung: N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt und H. Schwenk, Angew. Chem., 108 (1996) 110; Angew. Chem., Int. Ed. Engl., 35 (1996). Zugleich 43. Mitteilung über ungesättigte Verbindungen des Siliciums und seiner Gruppenhomologen. 42. Mitteilung: [10].
- [2] N. Wiberg und G. Wagner, Chem. Ber., 119 (1986) 1455, 1467.
- [3] N. Wiberg, G. Wagner und G. Müller, Angew. Chem., 97 (1985) 220; Angew. Chem., Int. Ed. Engl., 24 (1985) 229; N. Wiberg, G. Wagner, J. Riede und G. Müller, Organometallics, 6 (1987) 32.
- [4] In den vergangenen Jahren sind einige stabile Germaethene [R₂Ge=CR'₂ ↔ R₂Ge-CR'₂] u.a. durch A. Berndt et al., sowie J. Escudié et al. isoliert worden [z.B. R = (Me₃Si)₂N, R'₂ = ^t BuB-CR''₂-B^tBu, mit R'' = SiMe₃ (GeC-Abstand = 1.827 Å) bzw. R = Mes, CR'₂ = Fluorenyl (GeC-Abstand = 1.80 Å)] bzw, R = Mes, CR'₂ = CH(CH₂^tBu) deren Stabilität anders als von 2a nicht nur sterisch, sondern zum Teil auch elektronisch bedingt ist (Stabilisierung der Grenzformel R₂Ge-CR'₂ durch Einbeziehen des freien Elektronenpaars in das π-System von R' mit der Folge einer GeC-Abstandsverlängerung). Vgl. hierzu C. Couret, J. Escudié, G. Delphon-Lacaze und J. Satgé, Organometallics, 11 (1992) 3176 und dort zit. Lit.
- [5] N. Wiberg und H.-S. Hwang-Park, Veröffentlichung in Vorbereitung.
- [6] Die Verbindung ¹Bu₂SiBr-CH(SiMe₃)₂ (4) lagert sich in Anwesenheit der Lewis-Säure AlBr₃—wie überprüft wurde [2]—in ¹Bu₂SiMe-CH(SiMe₃)(SiMe₂Br) um (vgl. hierzu [7]). Für die Umlagerung im Falle von 8 spricht, daß wachsende THF-Anteile im Reaktionsmedium neben Et₂O die Ausbeute an 15 erhöhen (THF bewirkt eine Depolymerisation von (MeLi)₄ mit Freilegung der Lewis-Säure Li⁺).
- [7] Im Falle der Umsetzung von 4 mit MeLi/THF bildet sich ausschließlich ¹Bu₂MeSi-CLi(SiMe₃)₂. Setzt man hierbei CD₃Li/THF ein, so bildet sich ¹Bu₂MeSi-CH(SiMe₃) (SiMe₂CD₃). Dies deutet darauf, daß auch ¹Bu₂SiBr-

 $CLi(EMe_3)_2$ zur Umlagerung in ^tBu₂MeSi-CLi(EMe₃)-(EMe₂Br) befähigt ist.

- [8] Die Verbindung ¹Bu₂SiH-CLi(SiMe₃)₂.4THF liefert im ¹H-NMR ebenfals zwei Protonensignale, die Verbindung ¹Bu₂SiMe-CLi(SiMe₃)₂.*n*THF ein sehr breites Protonensignal für die SiMe₃-Gruppen, so daß wohl die in Abb. 1(a) wiedergegebene Konformation (X = H bzw. Me; E = Si) vorliegt [2]. Die aus ¹Bu₂SiX-CH(GeMe₃)₂ (X = H, Me) mit MeLi in THF erhältlichen Verbindungen ¹Bu₂SiX-CLi (GeMe₃)₂.*n*THF [4] weisen demgegenüber nur jeweils ein ¹H-NMR-Protonensignal für die GeMe₃-Gruppen auf.
- [9] Vgl. z.B. U. Klingebiel, D. Stalke und S. Vollbrecht, Z. Naturforsch. B, 47 (1992) 27; K. Dippel, U. Klingebiel und D. Schmidt-Bäse, Z. Anorg. Allg. Chem., 619 (1993) 836 und dort zit. Lit.
- [10] Wie kürzlich nachgewiesen (N. Wiberg und M. Link, Chem. Ber., 128 (1995) 1241), wirkt Ph₂SiF-CLi(SiMe₃)₂ als MeLi-Quelle hinsichtlich Ph₂Si=C(SiMe₃)₂. Ferner bildet sich bei der Einwirkung des stabilen Silanimins ¹Bu₂Si=N(Si¹Bu₃) auf 10.2THF durch MeLi-Übertragung ¹Bu₂MeSi=NLi(Si¹Bu₃) in großer Ausbeute (N. Wiberg und H.-S. Hwang-Park, unveröffentlicht, 1991).
- [11] P.M. Nowakowski und L.H. Sommer, J. Organomet. Chem., 178 (1979) 95.
- [12] N. Wiberg, G. Preiner, O. Schieda und G. Fischer, *Chem. Ber.*, 114 (1981) 3505, 3518; N. Wiberg und M. Link, *Chem. Ber.*, 128 (1995) 1231.
- [13] Da Lithiumverbindungen ¹Bu₂SiX-CLi(GeMe₃)₂ aus geeigneten Vorstufen durch Einwirkung von MeLi darstellbar sind, bilden sich hierbei gegebenenfalls zugleich oder ausschließlich X-Substitutionsprodukte. Z.B. führt die Umsetzung von ¹Bu₂SiF-CH(GeMe₃)₂ (9) mit überschüssigem MeLi in Et₂O und in Anwesenheit von TMEDA langsam (in Tagen) unter Deprotonierung zu 10 (als TMEDA-Addukt [5]), zudem aber in 70% Ausbeute unter F/Me-Substitution zum Produkt ¹Bu₂SiMe-CH(GeMe₃)₂ (15), das sich unter den Reaktionsbedingungen allerdings in ¹Bu₂Si(CH₂GeMe₃)₂ umlagert.
- [14] N. Wiberg, G. Wagner, G. Reber, J. Riede und G. Müller, Organometallics, 6 (1987) 35.
- [15] Vgl. z.B. D.J. Brauer, S. Hietkamp und O. Stelzer, J. Organomet. Chem., 299 (1986) 137; G.S. Girolami, M.E. Riehl, K.S. Suslick und S.R. Wilson, Organometallics 11 (1992) 3907 und dort zit. Lit.; T. Kottke, K. Sung und R.J. Lagow, Angew. Chem., 107 (1995) 1612; Angew. Chem., Int. Ed. Engl., 34 (1995) 1517.
- [16] N. Wiberg und K. Schurz, J. Organomet. Chem., 341 (1988) 145.
- [17] M. Weidenbruch, H. Pesel, W. Peter und R. Streichen, J. Organomet. Chem., 9 (1977) 141.
- [18] W. Stanczyk, J. Organomet. Chem., 299 (1986) 15; T.J. Barton und S.K. Hoekman, J. Am. Chem. Soc., 102 (1980) 1584.
- [19] R.B. Bates, L.M. Kroposki und D.E. Potter, J. Org. Chem., 37 (1972) 560.
- [20] J. Schraml, V. Chvalovský, M. Mägi und E. Lippmaa, Collect. Czech. Chem. Commun., 46 (1981) 377.
- [21] N. Wiberg, H. Schuster, A. Simon und K. Peters, Angew. Chem., 98 (1986) 100; Angew. Chem., Int. Ed. Engl., 25 (1986) 79.
- [22] D. Seyferth und D.C. Annarelli, J. Am. Chem. Soc., 97 (1975) 2273; P. Boudjouk und U. Samaraweera, Angew. Chem., 27 (1988) 1406; Angew. Chem., Int. Ed. Engl., 27 (1988) 1355; H.-O. Kalinowski, ¹³C-NMR-Spektroskopie, Thieme, Stuttgart, 1984; D. Seyferth, D.P. Duncan und C.K. Haars, J. Organomet. Chem., 164 (1979) 305.
- [23] H. Zimmermann und H. Burzlaff, Z. Krist., 170 (1985) 241.
- [24] Y. LePage, J. Appl. Cryst., 15 (1982) 255.

- [25] G.M. Sheldrick, in G.M. Sheldrick, C. Krüger und R. Godard (Hrsg.), Crystallographic Computing 3, Oxford University Press, 1985, S. 175.
- [26] Y. LePage, MISSYM, J. Appl. Crystallogr., 20 (1987) 264, wie im Programm PLATON enthalten: A.L. Spek, Acta Crystallogr., A46 (1990) C34.
- [27] G.M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, 1976.
- [28] Weitere Angaben zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-59136 angefordert werden.